31 resultados para Fusarium oxysporum
Resumo:
La fusariosis del cuello y de las raíces del tomate ("mancha chocolate"), causada por el hongo F. o. f. sp. radicis-lycopersici, es una micosis cada vez más extendida en los cultivos de tomate de las provincias de Almería y Granada. Su gravedad es alta, llegando a alcanzar al 78% de las plantas en algún invernadero con cultivo sobre fibra de coco. Ante esta situación, se estimó necesario evaluar la resistencia de patrones utilizados para injertar variedades de tomate. Así, 16 patrones fueron valorados frente a una cepa muy patógena del hongo. Los patrones fueron:CLXTPG01, AR9704, AR97015, AR97009, Morgan, Spirit, Herman, Armstrong, Arnold, Big Power, Emperador, 61-071, Montezuma, Beaufort, Multifort, Maxifort, Tovi Star y Alegro. Dos ensayos sobre plantas en estado de 6-8 hojas verdaderas bien formadas, mostraron que todos los patrones expresaron una resistencia completa, exceptuando los denominados CLXTPG01 y AR97015. Entendemos que esta información es necesaria debidio a la escasa disponibilidad.
Resumo:
In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies.
Resumo:
El trabajo presentado estudia la presencia de Fusarium oxysporum, F.solani(sensulato), F. equiseti y F.acuminatum en puntos del litoral de Almería, Alicante, Gerona e Islas Baleares (Menorca, Ibiza, Espalmador). Se analizaron tanto arenas de las playas (zonas intermareal y supramareal) como fondos marino situados a 27,9 y 7,2 metros de profundidad en Almería y a 10 m de profundidad en las Islas Baleares. Exceptuando el litoral de Gerona, en el resto de los enclaves se presentaron varias especies de Fusarium que se aislaron de las arenas de las playas, confirmando así resultados obtenidos con anterioridad. Lo más novedoso fue encontrar especies de Fusarium a diferentes profundidades marinas. En Almería F.oxysporum y F.equisti se aislaron a 27,9 y7,2 m profundidad. F. acuminatum se aisló de la muetra recogida a 27m de profundidad. En las islas Baleares, a10m de profundidad, se aislaron F. oxysporum, F. solani (sensulato), F.equiseti y F.acuminatum. El efecto antrópico, el comportamiento como "airborne" o los arrastres de aguas por las ramblas y torrentes podría explicar la presencia de estas especies en los hábitats mencionados. La permanencia de estas especies en los hábitats mencionados, especialmente en la zona intermareal de las playas y en los fondos marinos donde soportan elevadas presiones osmóticas por la alta salinidad del agua del mar Mediterráneo, permitirá estudios específicos sobre el comportamiento de estos hongos en medios muy salinos. Otros hongos aislados de arenas de playa y fondos marinos fueron: Acremonium, Alternaria, Aspergillus, Cladosporium, Dreschlera, Gliocladium Humicola, Penicillium, Phialophora, Rhizopus, Stemphylium, Trichoderma, Trichocladium y Ulocladium. Muchos de ellos fueron aislados del fondo marino, testimoniando así que estos hábitats no son exclusivos de Fusarium.
Resumo:
Actualmente, la reducción de materias activas (UE) y la implantación de la nueva Directiva comunitaria 2009/128/ que establece el marco de actuación para conseguir un uso sostenible de los plaguicidas químicos y la preferencia de uso de métodos biológicos, físicos y otros no químicos, obliga a buscar métodos de control menos perjudiciales para el medio ambiente. El control biológico (CB) de enfermedades vegetales empleando agentes de control biológico (ACB) se percibe como una alternativa más segura y con menor impacto ambiental, bien solos o bien como parte de una estrategia de control integrado. El aislado 212 de Penicillium oxalicum (PO212) (ATCC 201888) fue aislado originalmente de la micoflora del suelo en España y ha demostrado ser un eficaz ACB frente a la marchitez vascular del tomate. Una vez identificado y caracterizado el ACB se inició el periodo de desarrollo del mismo poniendo a punto un método de producción en masa de sus conidias. Tras lo cual se inició el proceso de formulación del ACB deshidratando las conidias para su preservación durante un período de tiempo mayor mediante lecho fluido. Finalmente, se han desarrollado algunos formulados que contienen de forma individual diferentes aditivos que han alargado su viabilidad, estabilidad y facilitado su manejo y aplicación. Sin embargo, es necesario seguir trabajando en la mejora de su eficacia de biocontrol. El primer objetivo de esta Tesis se ha centrado en el estudio de la interacción ACB-patógeno-huésped que permita la actuación de P.oxalicum en diferentes patosistemas. Uno de los primeros puntos que se abordan dentro de este objetivo es el desarrollo de nuevas FORMULACIONES del ACB que incrementen su eficacia frente a la marchitez vascular del tomate. Las conidias formuladas de PO212 se obtuvieron por la adición conjunta de distintos aditivos (mojantes, adherentes o estabilizantes) en dos momentos diferentes del proceso de producción/secado: i) antes del proceso de producción (en la bolsa de fermentación) en el momento de la inoculación de las bolsas de fermentación con conidias de PO212 o ii) antes del secado en el momento de la resuspensión de las conidias tras su centrifugación. De las 22 nuevas formulaciones desarrolladas y evaluadas en plantas de tomate en ensayos en invernadero, seis de ellas (FOR22, FOR25, FOR32, FOR35, FOR36 y FOR37) mejoran significativamente (P=0,05) el control de la marchitez vascular del tomate con respecto al obtenido con las conidias secas de P.oxalicum sin aditivos (CSPO) o con el fungicida Bavistin. Los formulados que mejoran la eficacia de las conidias secas sin aditivos son aquellos que contienen como humectantes alginato sódico en fermentación, seguido de aquellos que contienen glicerol como estabilizante en fermentación, y metil celulosa y leche desnatada como adherentes antes del secado. Además, el control de la marchitez vascular del tomate por parte de los formulados de P. oxalicum está relacionado con la fecha de inicio de la enfermedad. Otra forma de continuar mejorando la eficacia de biocontrol es mejorar la materia activa mediante la SELECCIÓN DE NUEVAS CEPAS de P. oxalicum, las cuales podrían tener diferentes niveles de eficacia. De entre las 28 nuevas cepas de P. oxalicum ensayadas en cámara de cultivo, sólo el aislado PO15 muestra el mismo nivel de eficacia que PO212 (62-67% de control) frente a la marchitez vascular del tomate en casos de alta presión de enfermedad. Mientras que, en casos de baja presión de enfermedad todas las cepas de P. oxalicum y sus mezclas demuestran ser eficaces. Finalmente, se estudia ampliar el rango de actuación de este ACB a OTROS HUÉSPEDES Y OTROS PATÓGENOS Y DIFERENTES GRADOS DE VIRULENCIA. En ensayos de eficacia de P. oxalicum frente a aislados de diferente agresividad de Verticillium spp. y Fusarium oxysporum f. sp. lycopersici en plantas de tomate en cámaras de cultivo, se demuestra que la eficacia de PO212 está negativamente correlacionada con el nivel de enfermedad causada por F. oxysporum f. sp. lycopersici pero que no hay ningún efecto diferencial en la reducción de la incidencia ni de la gravedad según la virulencia de los aislados. Sin embargo, en los ensayos realizados con V. dahliae, PO212 causa una mayor reducción de la enfermedad en las plantas inoculadas con aislados de virulencia media. La eficacia de PO212 también era mayor frente a aislados de virulencia media alta de F. oxysporum f. sp. melonis y F. oxysporum f. sp. niveum, en plantas de melón y sandía, respectivamente. En ambos huéspedes se demuestra que la dosis óptima de aplicación del ACB es de 107 conidias de PO212 g-1 de suelo de semillero, aplicada 7 días antes del trasplante. Además, entre 2 y 4 nuevas aplicaciones de PO212 a la raíces de las plantas mediante un riego al terreno de asiento mejoran la eficacia de biocontrol. La eficacia de PO212 no se limita a hongos patógenos vasculares como los citados anteriormente, sino también a otros patógenos como: Phytophthora cactorum, Globodera pallida y G. rostochiensis. PO212 reduce significativamente los síntomas (50%) causados por P. cactorum en plantas de vivero de fresa, tras la aplicación del ACB por inmersión de las raíces antes de su trasplante al suelo de viveros comerciales. Por otra parte, la exposición de los quistes de Globodera pallida y G. rostochiensis (nematodos del quiste de la patata) a las conidias de P. oxalicum, en ensayos in vitro o en microcosmos de suelo, reduce significativamente la capacidad de eclosión de los huevos. Para G. pallida esta reducción es mayor cuando se emplean exudados de raíz de patata del cv. 'Monalisa', que exudados de raíz del cv. 'Desirée'. No hay una reducción significativa en la tasa de eclosión con exudados de raíz de tomate del cv. 'San Pedro'. Para G. rostochiensis la reducción en la tasa de eclosión de los huevos se obtiene con exudados de la raíz de patata del cv. 'Desirée'. El tratamiento con P. oxalicum reduce también significativamente el número de quistes de G. pallida en macetas. Con el fin de optimizar la aplicación práctica de P. oxalicum cepa 212 como tratamiento biológico del suelo, es esencial entender cómo el entorno físico influye en la capacidad de colonización, crecimiento y supervivencia del mismo, así como el posible riesgo que puede suponer su aplicación sobre el resto de los microorganismos del ecosistema. Por ello en este segundo objetivo de esta tesis se estudia la interacción del ACB con el medio ambiente en el cual se aplica. Dentro de este objetivo se evalúa la INFLUENCIA DE LA TEMPERATURA, DISPONIBILIDAD DE AGUA Y PROPIEDADES FÍSICO-QUÍMICAS DE LOS SUELOS (POROSIDAD, TEXTURA, DENSIDAD...) SOBRE LA SUPERVIVENCIA Y EL CRECIMIENTO DE PO212 en condiciones controladas elaborando modelos que permitan predecir el impacto de cada factor ambiental en la supervivencia y crecimiento de P. oxalicum y conocer su capacidad para crecer y sobrevivir en diferentes ambientes. En las muestras de suelo se cuantifica: i) la supervivencia de Penicillium spp. usando el recuento del número de unidades formadoras de colonias en un medio de cultivo semi-selectivo y ii) el crecimiento (biomasa) de PO212 mediante PCR en tiempo real. En los resultados obtenidos se demuestra que P. oxalicum crece y sobrevive mejor en condiciones de sequía independientemente de la temperatura y del tipo de suelo. Si comparamos tipos de suelo P. oxalicum crece y sobrevive en mayor medida en suelos areno-arcillosos con un bajo contenido en materia orgánica, un mayor pH y una menor disponibilidad de fósforo y nitrógeno. La supervivencia y el crecimiento de P. oxalicum se correlaciona de forma negativa con la disponibilidad de agua y de forma positiva con el contenido de materia orgánica. Sólo la supervivencia se correlaciona también positivamente con el pH. Por otro lado se realizan ensayos en suelos de huertos comerciales con diferentes propiedades físico-químicas y diferentes condiciones ambientales para ESTUDIAR EL ESTABLECIMIENTO, SUPERVIVENCIA Y DISPERSIÓN VERTICAL Y MOVILIDAD HORIZONTAL DE PO212. P. oxalicum 212 puede persistir y sobrevivir en esos suelos al menos un año después de su liberación pero a niveles similares a los de otras especies de Penicillium indígenas presentes en los mismos suelos naturales. Además, P. oxalicum 212 muestra una dispersión vertical y movilidad horizontal muy limitada en los diferentes tipos de suelo evaluados. La introducción de P. oxalicum en un ambiente natural no sólo implica su actuación sobre el microorganismo diana, el patógeno, si no también sobre otros microorganismos indígenas. Para EVALUAR EL EFECTO DE LA APLICACIÓN DE P. oxalicum SOBRE LAS POBLACIONES FÚNGICAS INDIGENAS PRESENTES EN EL SUELO de dos huertos comerciales, se analizan mediante electroforesis en gradiente desnaturalizante de poliacrilamida (DGGE) muestras de dichos suelos a dos profundidades (5 y 10 cm) y a cuatro fechas desde la aplicación de P. oxalicum 212 (0, 75, 180 y 365 días). El análisis de la DGGE muestra que las diferencias entre las poblaciones fúngicas se deben significativamente a la fecha de muestreo y son independientes del tratamiento aplicado y de la profundidad a la que se tomen las muestras. Luego, la aplicación del ACB no afecta a la población fúngica de los dos suelos analizados. El análisis de las secuencias de la DGGE confirma los resultados anteriores y permiten identificar la presencia del ACB en los suelos. La presencia de P. oxalicum en el suelo se encuentra especialmente relacionada con factores ambientales como la humedad. Por tanto, podemos concluir que Penicillium oxalicum cepa 212 puede considerarse un óptimo Agente de Control Biológico (ACB), puesto que es ecológicamente competitivo, eficaz para combatir un amplio espectro de enfermedades y no supone un riesgo para el resto de microorganismos fúngicos no diana presentes en el lugar de aplicación. ABSTRACT Currently, reduction of active (EU) and the implementation of the new EU Directive 2009/128 which establishing the framework for action to achieve the sustainable use of chemical pesticides and preference of use of biological, physical and other non-chemical methods, forces to look for control methods less harmful to the environment. Biological control (CB) of plant diseases using biological control agents (BCA) is perceived as a safer alternative and with less environmental impact, either alone or as part of an integrated control strategy. The isolate 212 of Penicillium oxalicum (PO212) (ATCC 201888) was originally isolated from the soil mycoflora in Spain. P. oxalicum is a promising biological control agent for Fusarium wilt and other tomato diseases. Once identified and characterized the BCA, was developed a mass production method of conidia by solid-state fermentation. After determined the process of obtaining a formulated product of the BCA by drying of product by fluid-bed drying, it enables the preservation of the inoculum over a long period of time. Finally, some formulations of dried P. oxalicum conidia have been developed which contain one different additive that have improved their viability, stability and facilitated its handling and application. However, further work is needed to improve biocontrol efficacy. The first objective of this thesis has focused on the study of the interaction BCA- pathogen-host, to allow P.oxalicum to work in different pathosystems. The first point to be addressed in this objective is the development of new FORMULATIONS of BCA which increase their effectiveness against vascular wilt of tomato. PO212 conidial formulations were obtained by the joint addition of various additives (wetting agents, adhesives or stabilizers) at two different points of the production-drying process: i) to substrate in the fermentation bags before the production process, and (ii) to conidial paste obtained after production but before drying. Of the 22 new formulations developed and evaluated in tomato plants in greenhouse tests, six of them (FOR22 , FOR25 , FOR32 , FOR35 , FOR36 and FOR3) improved significantly (P = 0.05) the biocontrol efficacy against tomato wilt with respect to that obtained with dried P.oxalicum conidia without additives (CSPO) or the fungicide Bavistin. The formulations that improve the efficiency of dried conidia without additives are those containing as humectants sodium alginate in the fermentation bags, followed by those containing glycerol as a stabilizer in the fermentation bags, and methylcellulose and skimmed milk as adherents before drying. Moreover, control of vascular wilt of tomatoes by PO212 conidial formulations is related to the date of disease onset. Another way to further improve the effectiveness of biocontrol is to improve the active substance by SELECTION OF NEW STRAINS of P. oxalicum, which may have different levels of effectiveness. Of the 28 new strains of P. oxalicum tested in a culture chamber, only PO15 isolate shows the same effectiveness that PO212 (62-67 % of control) against tomato vascular wilt in cases of high disease pressure. Whereas in cases of low disease pressure all strains of P. oxalicum and its mixtures effective. Finally, we study extend the range of action of this BCA TO OTHER GUESTS AND OTHER PATHOGENS AND DIFFERENT DEGREES OF VIRULENCE. In efficacy trials of P. oxalicum against isolates of different aggressiveness of Verticillium spp. and Fusarium oxysporum f. sp. lycopersici in tomato plants in growth chambers, shows that the efficiency of PO212 is negatively correlated with the level of disease caused by F. oxysporum f. sp. lycopersici. There is not differential effect in reducing the incidence or severity depending on the virulence of isolates. However, PO212 cause a greater reduction of disease in plants inoculated with virulent isolates media of V. dahlia. PO212 efficacy was also higher against isolates of high and average virulence of F. oxysporum f. sp. melonis and F. oxysporum f. sp. niveum in melon and watermelon plants, respectively. In both hosts the optimum dose of the BCA application is 107 conidia PO212 g-1 soil, applied on seedlings 7 days before transplantation into the field. Moreover, the reapplication of PO212 (2-4 times) to the roots by irrigation into the field improve efficiency of biocontrol. The efficacy of PO212 is not limited to vascular pathogens as those mentioned above, but also other pathogens such as Oomycetes (Phytophthora cactorum) and nematodes (Globodera pallida and G. rostochiensis). PO212 significantly reduces symptoms (50 %) caused by P. cactorum in strawberry nursery plants after application of BCA by dipping the roots before transplanting to soil in commercial nurseries. Moreover, the exposure of G. pallida and G. rostochiensis cysts to the conidia of P. oxalicum, in in vitro assays or in soil microcosms significantly reduces hatchability of eggs. The reduction in the rate of G. pallida juveniles hatching was greatest when root diffusates from the `Monalisa´ potato cultivar were used, followed by root diffusates from the `Désirée´ potato cultivar. However, no significant reduction in the rate of G. pallida juveniles hatching was found when root diffusates from the ‘San Pedro” tomato cultivar were used. For G. rostochiensis reduction in the juveniles hatching is obtained from the root diffusates 'Desirée' potato cultivar. Treatment with P. oxalicum also significantly reduces the number of cysts of G. pallida in pots. In order to optimize the practical application of P. oxalicum strain 212 as a biological soil treatment, it is essential to understand how the physical environment influences the BCA colonization, survival and growth, and the possible risk that can cause its application on other microorganisms in the ecosystem of performance. Therefore, the second objective of this thesis is the interaction of the BCA with the environment in which it is applied. Within this objective is evaluated the INFLUENCE OF TEMPERATURE, WATER AVAILABILITY AND PHYSICAL-CHEMICAL PROPERTIES OF SOILS (POROSITY, TEXTURE, DENSITY...) ON SURVIVAL AND GROWTH OF PO212 under controlled conditions to develop models for predicting the environmental impact of each factor on survival and growth of P. oxalicum and to know their ability to grow and survive in different environments. Two parameters are evaluated in the soil samples: i) the survival of Penicillium spp. by counting the number of colony forming units in semi-selective medium and ii) growth (biomass) of PO212 by real-time PCR. P. oxalicum grows and survives better in drought conditions regardless of temperature and soil type. P. oxalicum grows and survives more in sandy loam soils with low organic matter content, higher pH and lower availability of phosphorus and nitrogen. Survival and growth of P. oxalicum negatively correlates with the availability of water and positively with the organic content. Only survival also correlated positively with pH. Moreover, trials are carried out into commercial orchards soils with different physic-chemical properties and different environmental conditions TO STUDY THE ESTABLISHMENT, SURVIVAL, VERTICAL DISPERSION AND HORIZONTAL SPREAD OF PO212. P. oxalicum 212 can persist and survive at very low levels in soil one year after its release. The size of the PO212 population after its release into the tested natural soils is similar to that of indigenous Penicillium spp. Furthermore, the vertical dispersion and horizontal spread of PO212 is limited in different soil types. The introduction of P. oxalicum in a natural environment not only involves their action on the target organism, the pathogen, but also on other indigenous microorganisms. TO ASSESS THE EFFECT OF P. oxalicum APPLICATION ON SOIL INDIGENOUS FUNGAL COMMUNITIES in two commercial orchards, soil samples are analyzed by Denaturing Gradient Gel Electrophoresis polyacrylamide (DGGE). Samples are taken from soil at two depths (5 and 10 cm) and four dates from the application of P. oxalicum 212 (0, 75, 180 and 365 days). DGGE analysis shows that differences are observed between sampling dates and are independent of the treatment of P. oxalicum applied and the depth. BCA application does not affect the fungal population of the two soil analyzed. Sequence analysis of the DGGE bands confirms previous findings and to identify the presence of BCA on soils. The presence of P. oxalicum in soil is especially related to environmental factors such as humidity. Therefore, we conclude that the 212 of strain Penicillium oxalicum can be considered an optimum BCA, since it is environmentally competitive and effective against a broad spectrum of diseases and does not have any negative effect on soil non-target fungi communities.
Resumo:
Myceliar growth of 90 Fusarium strains os F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F.verticillioides, F. oxysporum, F. proliferatum, F. solani an F. sambucinum isolated from fluvial channels and sea beds of the south-eastern coast of Spain was tested on potato-dextrose-agar adjusted to different matric potentials with either KCl or NaCl (from - 1.50 to - 144.54 bars).
Resumo:
Germination of macroconidia and/or microconidia of 24 strains of Fusarium solani, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. sambucinum, F. oxysporum and F. proliferatum isolated from fluvial channels and sea beds of the south-eastern coast of Spain, and three control strains (F. oxysporum isolated from affected cultures) was studied in distilled water in response to a range of water potentials adjusted with NaCI. (0, -13.79, -41.79, -70.37, -99.56 and -144.54 bars). The vialibility (UFC/ml) of suspension was also tested in three time periods (0,24 and 48h). Conidia always germinated in distilled water. The pattern of conidial germination obseved of F. verticillioides, F. oxysporum, F. proliferatum, F. chlamydosporum and F. culmorum was similar. A great diminution of spore germination was found in -13.79 bars solutions. Spore germination percentage for F. solani isolates was maximal at 48 h. and -13.79 bars with 21.33% spore germination, 16% higher than germination in distilled water. F. equiseti shows the maximum germination percentage in -144.54 bars solution in 24 h time with 12.36% germination. These results did not agree with those obtained in the viability test where maximum germination was found in distilled water. The viability analysis showed the great capacity of F. verticilloides strains to form viable colonies, even in such extreme conditions as -144,54 bars after 24 h F. proliferatum colony formation was prevented in the range of -70.37 bars. These results show the clear affectation of water potential to conidia germination of Fusaria. The ability of certain species of Fusarium to develop a saprophytic life in the salt water of the Mediterraneam Sea could be certain. Successful germination, even under high salty media conditions, suggests taht Fusarium spp. could have a competitive advantage over other soil fungi in crops irrigated with saline water. In the specific case of F. solani, water potential of -13.79 bars affected germination positively. It could indicate that F. solani has an special physiological mechanism of survival in low water potential environments.
Resumo:
Este trabajo es continuación de una serie de estudios sobre la biogeografía de Fusarium que se están realizando desde hace 5 años en España. En él se presentan los resultados analíticos para el género Fusarium de muestras de aguas del cauce del río Andarax y de fondos del mar Mediterráneo en las provincias de Granada y Almería (Sureste de España). Se analizan un total de 18 muestras de agua del río Andarax. De ellas se aislaron 10 especies de Fusarium: F. anthophilum, F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. solani y F. sambucinum. De las 23 muestras del mar Mediterráneo se aislaron 5 especies: F. equiseti,F. moliniforme, F. oxysporum, F. proliferatum y F. solani. Sobre el total de muestras analizadas, un 27,45% de las muestras de aguas del río y un 29,41% de muestras de procedencia marina presentaron como mínimo una especie de Fusarium a lo largo de casi 12 meses de muestreo. Considerando las muestras según sus orígenes se encuentra que en las de origen aguas del río un 77,77% presentaron alguna especie de Fusarium; en el caso de los fondos marinos un 45,45% de las muestras presentó alguna especie de Fusarium. La mayor presencia de especies en las aguas del río puede ser debida a los contenidos en el agua de partículas de suelo y materia orgánica, después de los arrastres producidos en las orillas por las lluvias. La presencia de especies encontradas en el mar puede ser consecuencia de las aguas de los cauces que desembocan en éste. Sin embargo, no pueden excluirse otras vías.
Resumo:
En este artículo se estudia la patogenicidad de las especies de Fusarium aisladas de muestras de fondos marinos del Mediterráneo y de aguas del cauce del río Andarax en las provincias de Granada y Almería (Sureste de España) sobre plántulas de cebada, colirrábano, melón y tomate. La evaluación del poder patógeno se hizo para 41 aislados de 9 especies de Fusarium aisladas de agus de mar y de río: F. acuminatum, F. chlamydosporum, F.culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. sambucinum y F. solani. Todos los aislados de las diferentes especies mostraron patogenicidad tanto en preemergencia como en postemergencia de plántulas. No fue posible distiguir a los aislados según su procedencia: aguas marinas o de río.
Resumo:
Species of Fusarium were isolated from water samples collected from the Andarax River and coastal sea water of the Mediterranean in Granada and Almería provinces of southeastern Spain. In total, 18 water samples were analyzed from the Andarax River, and 10 species of Fusarium were isolated: Fusarium anthophilum, F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. solani, and F. solani. When considering the samples by their origins, 77.8% of the river water samples yielded at least one species of Fusarium , with F. oxysporum comprising 72.2% of the total isolates. In the case of marine water, 45.5% of the samples yielded at least one species of Fusarium, with F. solani comprising 36.3% of the total isolates. The pathogenicity of 41 isolates representing nine of the species collected from river an sea water during the study ws evluated on barley, kohlrabe, melon, and tomato. Inoculation with F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum F. solani, and F. sambucinum resulted in pre-and post-emergence damping off. Pathogenicity of Fusarium isolates did not seem to be related to the origin of the isolates (sea water or fresh water). However, the presence of pathogenic species of Fusarium in river water flowing to the sea could indicate long-distance dispersal in natural water environments
Resumo:
The pathogenicity of seven strains of Fusarium equiseti isolated from seabed soil was evaluated on different host plants showing pre and post emergence damage. Radial growth of 27 strains was measured on culture media previously adjusted to different osmotic potentials with either KCl or NaCl (-1.50 to - 144.54 bars) at 15º, 25º and 35º C. Significant differences and interactive effects were observed in the response of mycelia to osmotic potential and temperature.
Resumo:
La producción anual de ajo en España es de 154.587 t y su cultivo ocupa unas 15.900 ha distribuidas principalmente en Castilla La Mancha (53,1%), Andalucía (27,4%) y Castilla y León (9,1%). En Castilla La Mancha, la principal Comunidad productora, se ha cultivado en la presente campaña un 7 % más que en la campaña 2009/2010, siendo Albacete la provincia con mayor superficie cultivada de ajos con 4.750 ha, seguida de Cuenca con 2.200 ha. Las plagas y enfermedades en el cultivo del ajo suponen elevadas pérdidas económicas cada año en nuestro país. En 2008, distintos agricultores de varios municipios de Castilla y León detectaron bulbos de ajo del cultivar “Blancomor de Vallelado” que presentaban síntomas de podredumbre húmeda durante el almacenamiento. Posteriormente, en el año 2009, esta misma podredumbre se observó también en las provincias de Albacete y Cuenca en el cultivar “Morado de Pedroñeras”. Estudios sobre esta nueva enfermedad se están llevando a cabo en colaboración con productores castellanomanchegos pertenecientes a Coopaman SCL
Resumo:
Fifty-nine rhizospheric soil samples from twenty different melon farms of Guatemala and Honduras were analysed to study the Fusarium species present in the soil and those developing on roots surfaces.
Resumo:
The mycelial growth of 18 Fusarium solani strains isolated from sea beds of the south-eastern coast of Spain was tested on potato-dextrose agar adjusted to different osmotic potentials with either KCl or NACl (-1.50 to -144.54 bars) in 10ºC intervals ranging from 15 to 35ºC. Fungal growth was determined by measuring colony diameter after 4 days incubation. Mycelial growth was maximal at 25ºC. The quantity and frequency pattern of mycelial growth of F. solani differ significantly at 15 and 25ºC, with maximal occurring at the highest water potential tested (-1.50 bars); and at 35ºC, with a maximal mycelial growth at -13.79 bars. The effect of water potential was independent of salt composition. The general growth pattern of F. solani showed declining growth at potentials below -41.79 bars. Fungal growth at 35ºC was always higher than that growth at 15ºC, of all the water potentials tested. Significant differences observed in the response of mycelia to water potential and temperature as main and interactive effects. The viability of cultures was increasingly inhibited as the water potential dropped, but some growth was still observed at -99.56 bars. These findings could indicate that marine strains of F. solani have a physiological mechanism that permits survival in environments with low water potential. The observed differences in viability and the magnitude growth could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.
Resumo:
The mycelial growth of 10 Fusarium culmorum strains isolated from water of the Andarax riverbed in the provinces of Granada and Almeria in southeastern Spain was tested on potato-dextroseagar adjusted to different osmotic potentials with either KCl or NaCl (−1.50 to−144.54 bars) at 10◦C intervals ranging from15◦ to 35◦C. Fungal growth was determined by measuring colony diameter after 4 d of incubation. Mycelial growth was maximal at 25◦C. The quantity and capacity of mycelial growth of F. culmorum were similar at 15 and 25◦C, with maximal growth occurring at −13.79 bars water potential and a lack of growth at 35◦C. The effect of water potential was independent of salt composition. The general growth pattern of Fusarium culmorum growth declined at potentials below −13.79 bars. Fungal growth at 25◦C was always greater than growth at 15◦C, at all of the water potentials tested. Significant differences were observed in the response ofmycelia to water potential and temperature as main and interactive effects. The number of isolates that showed growth was increasingly inhibited as the water potential dropped, but some growth was still observable at −99.56 bars. These findings could indicate that F. culmorum strains isolated from water have a physiological mechanism that permits survival in environments with low water potential. Propagules of Fusarium culmorum are transported long distances by river water, which could explain the severity of diseases caused by F.culmorum on cereal plants irrigated with river water and its interaction under hydric stress ormoderate soil salinity. The observed differences in growth magnitude and capacity could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.
Resumo:
El sorgo anual ha sido clasificado por de Wet (1978) como Sorghum bicolor (L.) Moench (2n=20) subespecie bicolor, con 5 razas básicas: bicolor, guinea, caudatum, kafir y durra, las que incluyen los distintos tipos de sorgo existentes en el mercado como los graniferos, los forrajeros tipo sudán, dulces y escoberos (Giorda y Cordes, 2005).