38 resultados para Fatigue Crack Nucleation
Resumo:
Fastener holes in aeronautical structures are typical sources of fatigue cracks due to their induced local stress concentration. A very efficient solution to this problem is to establish compressive residual stresses around the fastener holes that retard the fatigue crack nucleation and its subsequent local propagation. Previous work done on the subject of the application of LSP treatment on thin, open-hole specimens [1] has proven that the LSP effect on fatigue life of treated specimens can be detrimental, if the process is not properly optimized. In fact, it was shown that the capability of the LSP to introduce compressive residual stresses around fastener holes in thin-walled structures representative of typical aircraft constructions was not superior to the performance of conventional techniques, such as cold-working.
Resumo:
Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.
Resumo:
En este trabajo se determina la tolerancia al daño de un acero inoxidable austeno-ferrítico trefilado hasta obtener resistencia propias del acero de pretensado. Para ello se han realizado ensayos de fractura sobre alambres con secciones transversales debilitadas por fisuras de fatiga propagadas desde la superficie exterior. La medida de la tolerancia al daño adoptada es la curva empírica carga de rotura-profundidad de fisura. Para valorar cuantitativamente los resultados, se utilizan las curvas de dos aceros de pretensar eutectoides, respectivamente fabricados por trefilado y por tratamiento térmico de templado y revenido, así como un modelo elemental de colapso plástico por tracción para alambres fisurados. La microestructura austeno-ferrítico de los alambres inoxidables adquiere una marcada orientación en la dirección de trefilado, que induce una fuerte anisotropía de fractura en los alambres y condiciona su mecanismo macroscópico de colapso a tracción cuando están Asurados. Para observar este mecanismo se ha utilizado la técnica VIC-2D de adquisición y análisis computerizado de imágenes digitales en ensayos mecánicos, aplicándola a ensayos de fractura a tracción realizados con probetas planas de alambre inoxidable trefilado Asuradas transversalmente. Damage tolerance of a high strength cold-drawn ferritic-austenitic stainless steel is assessed by means of tensile fracture tests of cracked wires. A fatigue crack was transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behavior is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D was used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plañe specimens extracted from the cold-drawn wires. Additionally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic-austenitic stainless steel wires is compared with that of the two types of high strength eutectoid wires currently used as prestressing steel for concrete. An elementary plástic collapse model for tensile failure of surface cracked wires is used to assess the damage tolerance curves.
Resumo:
The effect of the applied stress on the deformation and crack nucleation and propagation mechanisms of a c-TiAl intermetallic alloy (Ti-45Al-2Nb-2Mn (at. pct)-0.8 vol. pct TiB2) was examined by means of in situ tensile (constant strain rate) and tensile-creep (constant load) experiments performed at 973 K (700 �C) using a scanning electron microscope. Colony boundary cracking developed during the secondary stage in creep tests at 300 and 400 MPa and during the tertiary stage of the creep tests performed at higher stresses. Colony boundary cracking was also observed in the constant strain rate tensile test. Interlamellar ledges were only found during the tensile-creep tests at high stresses (r>400 MPa) and during the constant strain rate tensile test. Quantitative measurements of the nature of the crack propagation path along secondary cracks and along the primary crack indicated that colony boundaries were preferential sites for crack propagation under all the conditions investigated. The frequency of interlamellar cracking increased with stress, but this fracture mechanism was always of secondary importance. Translamellar cracking was only observed along the primary crack.
Resumo:
Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented
Resumo:
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper
Resumo:
The paper presents a consistent set of results showing the ability of Laser Shock Processing (LSP) in modifying the overall properties of the Friction Stir Welded (FSW) joints made of AA 2024-T351. Based on laser beam intensities above 109 W/cm2 with pulse energies of several Joules and pulses durations of nanoseconds, LSP is able of inducing a compression residual stress field, improving the wear and fatigue resistance by slowing crack propagation and stress corrosion cracking, but also improving the overall behaviour of the structure. After the FSW and LSP procedures are briefly presented, the results of micro-hardness measurements and of transverse tensile tests, together with the corrosion resistance of the native joints vs. LSP treated are discussed. The ability of LSP to generate compressive residual stresses and to improve the behaviour of the FSW joints is underscored.
Resumo:
This work summarizes the observations made on the variation and time evolution of the reflectanceanisotropy signal during the MOVPE growth of GaInPnucleation layers on Germanium substrates. This in situ monitoring tool is used to assess the impact of different nucleation routines and reactor conditions on the quality of the layers grown. This comparison is carried out by establishing a correlation between reflectanceanisotropy signature at 2.1 eV and the morphology of the epilayers evaluated by atomic force microscopy (AFM). This paper outlines the potential of reflectanceanisotropy to predict, explore, and therefore optimize, the best growth conditions that lead to a high quality III–V epilayer on a Ge substrate
Resumo:
•Self- assembled Ga(In)N Nanorods and Nanostructures •Ordered growth of GaN Nanorods: masks issues •Ordered growth of GaN Nanorods: mechanisms •White NanoLEDs
Resumo:
Numerous damage models have been developed in order to analyze seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of continuum damage mechanics are more consistent with the definition of damage as a phenomenon with mechanical consequences because they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, most of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Cipollina et al. [Cipollina A, López-Hinojosa A, Flórez-López J. Comput Struct 1995;54:1113–26] is made in order to include the low cycle fatigue. Such a model employs in its formulation irreversible thermodynamics and internal state variable theory.
Resumo:
To model strength degradation due to low cycle fatigue, at least three different approaches can be considered. One possibility is based on the formulation of a new free energy function and damage energy release rate, as was proposed by Ju(1989). The second approach uses the notion of bounding surface introduced in cyclic plasticity by Dafalias and Popov (1975). From this concept, some models have been proposed to quantify damage in concrete or RC (Suaris et al. 1990). The model proposed by the author to include fatigue effects is based essentially in Marigo (1985) and can be included in this approach.
Resumo:
The paper addresses the fracture propagation and stress corrosion behaviour of laser hybrid welds achieved between low carbon steel and stainless steel thin sheets. The crack propagation within these overmatched in strength welds was investigated by crack tip opening displacement (CTOD) on CT specimens notched transverse to the weld. A Digital Image Correlation System was used to qualify and estimate the initial crack length obtained by fatigue. The results are associated with the fractographic examinations of various regions of laser hybrid joints. Stress corrosion behaviour of the joint is also discussed.
Resumo:
Corrosion of a reinforcement bar leads to expansive pressure on the surrounding concrete that provokes internal cracking and, eventually, spalling and delamination. Here, an embedded cohesive crack 2D finite element is applied for simulating the cracking process. In addition, four simplified analytical models are introduced for comparative purposes. Under some assumptions about rust properties, corrosion rate, and particularly, the accommodation of oxide products within the open cracks generated in the process, the proposed FE model is able to estimate time to surface cracking quite accurately. Moreover, emerging cracking patterns are in reasonably good agreement with expectations. As a practical case, a prototype application of the model to an actual bridge deck is reported.
Resumo:
Damage models based on the Continuum Damage Mechanics (CDM) include explicitly the coupling between damage and mechanical behavior and, therefore, are consistent with the definition of damage as a phenomenon with mechanical consequences. However, this kind of models is characterized by their complexity. Using the concept of lumped models, possible simplifications of the coupled models have been proposed in the literature to adapt them to the study of beams and frames. On the other hand, in most of these coupled models damage is associated only with the damage energy release rate which is shown to be the elastic strain energy. According to this, damage is a function of the maximum amplitude of cyclic deformation but does not depend on the number of cycles. Therefore, low cycle effects are not taking into account. From the simplified model proposed by Flórez-López, it is the purpose of this paper to present a formulation that allows to take into account the degradation produced not only by the peak values but also by the cumulative effects such as the low cycle fatigue. For it, the classical damage dissipative potential based on the concept of damage energy release rate is modified using a fatigue function in order to include cumulative effects. The fatigue function is determined through parameters such as the cumulative rotation and the total rotation and the number of cycles to failure. Those parameters can be measured or identified physically through the haracteristics of the RC. So the main advantage of the proposed model is the possibility of simulating the low cycle fatigue behavior without introducing parameters with no suitable physical meaning. The good performance of the proposed model is shown through a comparison between numerical and test results under cycling loading.
Resumo:
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies and the evaluation of the corresponding induced properties as material specific volume reduction at the surface, microhardness and wear resistance. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.