26 resultados para Electric network parameters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associatedHVgraphs.We showhowthe alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics.We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper proposes a model for estimation of perceived video quality in IPTV, taking as input both video coding and network Quality of Service parameters. It includes some fitting parameters that depend mainly on the information contents of the video sequences. A method to derive them from the Spatial and Temporal Information contents of the sequences is proposed. The model may be used for near real-time monitoring of IPTV video quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Video over IP services, perceived video quality heavily depends on parameters such as video coding and network Quality of Service. This paper proposes a model for the estimation of perceived video quality in video streaming and broadcasting services that combines the aforementioned parameters with other that depend mainly on the information contents of the video sequences. These fitting parameters are derived from the Spatial and Temporal Information contents of the sequences. This model does not require reference to the original video sequence so it can be used for online, real-time monitoring of perceived video quality in Video over IP services. Furthermore, this paper proposes a measurement workbench designed to acquire both training data for model fitting and test data for model validation. Preliminary results show good correlation between measured and predicted values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current nanometer technologies are subjected to several adverse effects that seriously impact the yield and performance of integrated circuits. Such is the case of within-die parameters uncertainties, varying workload conditions, aging, temperature, etc. Monitoring, calibration and dynamic adaptation have appeared as promising solutions to these issues and many kinds of monitors have been presented recently. In this scenario, where systems with hundreds of monitors of different types have been proposed, the need for light-weight monitoring networks has become essential. In this work we present a light-weight network architecture based on digitization resource sharing of nodes that require a time-to-digital conversion. Our proposal employs a single wire interface, shared among all the nodes in the network, and quantizes the time domain to perform the access multiplexing and transmit the information. It supposes a 16% improvement in area and power consumption compared to traditional approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion of steel bars embedded in concrete has a great influence on structural performance and durability of reinforced concrete. Chloride penetration is considered to be a primary cause of concrete deterioration in a vast majority of structures. Therefore, modelling of chloride penetration into concrete has become an area of great interest. The present work focuses on modelling of chloride transport in concrete. The differential macroscopic equations which govern the problem were derived from the equations at the microscopic scale by comparing the porous network with a single equivalent pore whose properties are the same as the average properties of the real porous network. The resulting transport model, which accounts for diffusion, migration, advection, chloride binding and chloride precipitation, consists of three coupled differential equations. The first equation models the transport of chloride ions, while the other two model the flow of the pore water and the heat transfer. In order to calibrate the model, the material parameters to determine experimentally were identified. The differential equations were solved by means of the finite element method. The classical Galerkin method was employed for the pore solution flow and the heat transfer equations, while the streamline upwind Petrov Galerkin method was adopted for the transport equation in order to avoid spatial instabilities for advection dominated problems. The finite element codes are implemented in Matlab® . To retrieve a good understanding of the influence of each variable and parameter, a detailed sensitivity analysis of the model was carried out. In order to determine the diffusive and hygroscopic properties of the studied concretes, as well as their chloride binding capacity, an experimental analysis was performed. The model was successfully compared with experimental data obtained from an offshore oil platform located in Brazil. Moreover, apart from the main objectives, numerous results were obtained throughout this work. For instance, several diffusion coefficients and the relation between them are discussed. It is shown how the electric field set up between the ionic species depends on the gradient of the species’ concentrations. Furthermore, the capillary hysteresis effects are illustrated by a proposed model, which leads to the determination of several microstructure properties, such as the pore size distribution and the tortuosity-connectivity of the porous network. El fenómeno de corrosión del acero de refuerzo embebido en el hormigón ha tenido gran influencia en estructuras de hormigón armado, tanto en su funcionalidad estructural como en aspectos de durabilidad. La penetración de cloruros en el interior del hormigón esta considerada como el factor principal en el deterioro de la gran mayoría de estructuras. Por lo tanto, la modelización numérica de dicho fenómeno ha generado gran interés. El presente trabajo de investigación se centra en la modelización del transporte de cloruros en el interior del hormigón. Las ecuaciones diferenciales que gobiernan los fenómenos a nivel macroscópico se deducen de ecuaciones planteadas a nivel microscópico. Esto se obtiene comparando la red porosa con un poro equivalente, el cual mantiene las mismas propiedades de la red porosa real. El modelo está constituido por tres ecuaciones diferenciales acopladas que consideran el transporte de cloruros, el flujo de la solución de poro y la transferencia de calor. Con estas ecuaciones se tienen en cuenta los fenómenos de difusión, migración, advección, combinación y precipitación de cloruros. El análisis llevado a cabo en este trabajo ha definido los parámetros necesarios para calibrar el modelo. De acuerdo con ellas, se seleccionaron los ensayos experimentales a realizar. Las ecuaciones diferenciales se resolvieron mediante el método de elementos finitos. El método clásico de Galerkin se empleó para solucionar las ecuaciones de flujo de la solución de poro y de la transferencia de calor, mientras que el método streamline upwind Petrov-Galerkin se utilizó para resolver la ecuación de transporte de cloruros con la finalidad de evitar inestabilidades espaciales en problemas con advección dominante. El código de elementos finitos está implementado en Matlab® . Con el objetivo de facilitar la comprensión del grado de influencia de cada variable y parámetro, se realizó un análisis de sensibilidad detallado del modelo. Se llevó a cabo una campaña experimental sobre los hormigones estudiados, con el objeto de obtener sus propiedades difusivas, químicas e higroscópicas. El modelo se contrastó con datos experimentales obtenidos en una plataforma petrolera localizada en Brasil. Las simulaciones numéricas corroboraron los datos experimentales. Además, durante el desarrollo de la investigación se obtuvieron resultados paralelos a los planteados inicialmente. Por ejemplo, el análisis de diferentes coeficientes de difusión y la relación entre ellos. Así como también se observó que el campo eléctrico establecido entre las especies iónicas disueltas en la solución de poro depende del gradiente de concentración de las mismas. Los efectos de histéresis capilar son expresados por el modelo propuesto, el cual conduce a la determinación de una serie de propiedades microscópicas, tales como la distribución del tamaño de poro, además de la tortuosidad y conectividad de la red porosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrostatic plasma waves excited by a uniform, alternating electric field of arbitrary intensity are studied on the basis of the Vlasov equation; their dispersion relation, which involves the determinant of either of two infinite matrices, is derived. For ω0 ≫ ωpi (ω0 being the applied frequency and ωpi the ion plasma frequency) the waves may be classified in two groups, each satisfying a simple condition; this allows writing the dispersion relation in closed form. Both groups coalesce (resonance) if (a) ω0  ≈  ωpe/r (r any integer) and (b) the wavenumber k is small. A nonoscillatory instability is found; its distinction from the DuBois‐Goldman instability and its physical origin are discussed. Conditions for its excitation (in particular, upper limits to ω0,k, and k⋅vE,vE being the field‐induced electron velocity), and simple equations for the growth rate are given off‐resonance and at ω0  ≈  ωpi. The dependence of both threshold and maximum growth rate on various parameters is discussed, and the results are compared with those of Silin and Nishikawa. The threshold at ω0  ≈  ωpi/r,r  ≠  1, is studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) requires integrated "all in one" electronic devices capable of performing analysis of structural integrity and on-board damage detection in aircraft?s structures. PAMELA III (Phased Array Monitoring for Enhanced Life Assessment, version III) SHM embedded system is an example of this device type. This equipment is capable of generating excitation signals to be applied to an array of integrated piezoelectric Phased Array (PhA) transducers stuck to aircraft structure, acquiring the response signals, and carrying out the advanced signal processing to obtain SHM maps. PAMELA III is connected with a host computer in order to receive the configuration parameters and sending the obtained SHM maps, alarms and so on. This host can communicate with PAMELA III through an Ethernet interface. To avoid the use of wires where necessary, it is possible to add Wi-Fi capabilities to PAMELA III, connecting a Wi-Fi node working as a bridge, and to establish a wireless communication between PAMELA III and the host. However, in a real aircraft scenario, several PAMELA III devices must work together inside closed structures. In this situation, it is not possible for all PAMELA III devices to establish a wireless communication directly with the host, due to the signal attenuation caused by the different obstacles of the aircraft structure. To provide communication among all PAMELA III devices and the host, a wireless mesh network (WMN) system has been implemented inside a closed aluminum wingbox. In a WMN, as long as a node is connected to at least one other node, it will have full connectivity to the entire network because each mesh node forwards packets to other nodes in the network as required. Mesh protocols automatically determine the best route through the network and can dynamically reconfigure the network if a link drops out. The advantages and disadvantages on the use of a wireless mesh network system inside closed aerospace structures are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deployment of home-based smart health services requires effective and reliable systems for personal and environmental data management. ooperation between Home Area Networks (HAN) and Body Area Networks (BAN) can provide smart systems with ad hoc reasoning information to support health care. This paper details the implementation of an architecture that integrates BAN, HAN and intelligent agents to manage physiological and environmental data to proactively detect risk situations at the digital home. The system monitors dynamic situations and timely adjusts its behavior to detect user risks concerning to health. Thus, this work provides a reasoning framework to infer appropriate solutions in cases of health risk episodes. Proposed smart health monitoring approach integrates complex reasoning according to home environment, user profile and physiological parameters defined by a scalable ontology. As a result, health care demands can be detected to activate adequate internal mechanisms and report public health services for requested actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental monitoring has become a key aspect in food production over the last few years. Due to their low cost, low power consumption and flexibility, Wireless Sensor Networks (WSNs) have turned up as a very convenient tool to be used in these environments where no intrusion is a must. In this work, a WSN application in a food factory is presented. The paper gives an overview of the system set up, covering from the initial study of the parameters and sensors, to the hardware-software design and development needed for the final tests in the factory facilities.