39 resultados para Dynamical Systems Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, several computational schemes are presented for the optimal tuning of the global behavior of nonlinear dynamical sys- tems. Specifically, the maximization of the size of domains of attraction associated with invariants in parametrized dynamical sys- tems is addressed. Cell Mapping (CM) tech- niques are used to estimate the size of the domains, and such size is then maximized via different optimization tools. First, a ge- netic algorithm is tested whose performance shows to be good for determining global maxima at the expense of high computa- tional cost. Secondly, an iterative scheme based on a Stochastic Approximation proce- dure (the Kiefer-Wolfowitz algorithm) is eval- uated showing acceptable performance at low cost. Finally, several schemes combining neu- ral network based estimations and optimiza- tion procedures are addressed with promising results. The performance of the methods is illus- trated with two applications: first on the well-known van der Pol equation with stan- dard parametrization, and second the tuning of a controller for saturated systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report numerical evidence of the effects of a periodic modulation in the delay time of a delayed dynamical system. By referring to a Mackey-Glass equation and by adding a modula- tion in the delay time, we describe how the solution of the system passes from being chaotic to shadow periodic states. We analyze this transition for both sinusoidal and sawtooth wave mod- ulations, and we give, in the latter case, the relationship between the period of the shadowed orbit and the amplitude of the modulation. Future goals and open questions are highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop new techniques for revealing geometrical structures in phase space that are valid for aperiodically time dependent dynamical systems, which we refer to as Lagrangian descriptors. These quantities are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive geometrical and/or physical property of the trajectory itself. We discuss a general methodology for constructing Lagrangian descriptors, and we discuss a “heuristic argument” that explains why this method is successful for revealing geometrical structures in the phase space of a dynamical system. We support this argument by explicit calculations on a benchmark problem having a hyperbolic fixed point with stable and unstable manifolds that are known analytically. Several other benchmark examples are considered that allow us the assess the performance of Lagrangian descriptors in revealing invariant tori and regions of shear. Throughout the paper “side-by-side” comparisons of the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (“time averages”) are carried out and discussed. In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We also perform computations for an explicitly three dimensional, aperiodically time-dependent vector field and an aperiodically time dependent vector field defined as a data set. Comparisons with FTLEs and time averages for these examples are also carried out, with similar conclusions as for the benchmark examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El propósito de esta tesis fue estudiar el rendimiento ofensivo de los equipos de balonmano de élite cuando se considera el balonmano como un sistema dinámico complejo no lineal. La perspectiva de análisis dinámica dependiente del tiempo fue adoptada para evaluar el rendimiento de los equipos durante el partido. La muestra general comprendió los 240 partidos jugados en la temporada 2011-2012 de la liga profesional masculina de balonmano de España (Liga ASOBAL). En el análisis posterior solo se consideraron los partidos ajustados (diferencia final de goles ≤ 5; n = 142). El estado del marcador, la localización del partido, el nivel de los oponentes y el periodo de juego fueron incorporados al análisis como variables situacionales. Tres estudios compusieron el núcleo de la tesis. En el primer estudio, analizamos la coordinación entre las series temporales que representan el proceso goleador a lo largo del partido de cada uno de los dos equipos que se enfrentan. Autocorrelaciones, correlaciones cruzadas, doble media móvil y transformada de Hilbert fueron usadas para el análisis. El proceso goleador de los equipos presentó una alta consistencia a lo largo de todos los partidos, así como fuertes modos de coordinación en fase en todos los contextos de juego. Las únicas diferencias se encontraron en relación al periodo de juego. La coordinación en los procesos goleadores de los equipos fue significativamente menor en el 1er y 2º periodo (0–10 min y 10–20 min), mostrando una clara coordinación creciente a medida que el partido avanzaba. Esto sugiere que son los 20 primeros minutos aquellos que rompen los partidos. En el segundo estudio, analizamos los efectos temporales (efecto inmediato, a corto y a medio plazo) de los tiempos muertos en el rendimiento goleador de los equipos. Modelos de regresión lineal múltiple fueron empleados para el análisis. Los resultados mostraron incrementos de 0.59, 1.40 y 1.85 goles para los periodos que comprenden la primera, tercera y quinta posesión de los equipos que pidieron el tiempo muerto. Inversamente, se encontraron efectos significativamente negativos para los equipos rivales, con decrementos de 0.50, 1.43 y 2.05 goles en los mismos periodos respectivamente. La influencia de las variables situacionales solo se registró en ciertos periodos de juego. Finalmente, en el tercer estudio, analizamos los efectos temporales de las exclusiones de los jugadores sobre el rendimiento goleador de los equipos, tanto para los equipos que sufren la exclusión (inferioridad numérica) como para los rivales (superioridad numérica). Se emplearon modelos de regresión lineal múltiple para el análisis. Los resultados mostraron efectos negativos significativos en el número de goles marcados por los equipos con un jugador menos, con decrementos de 0.25, 0.40, 0.61, 0.62 y 0.57 goles para los periodos que comprenden el primer, segundo, tercer, cuarto y quinto minutos previos y posteriores a la exclusión. Para los rivales, los resultados mostraron efectos positivos significativos, con incrementos de la misma magnitud en los mismos periodos. Esta tendencia no se vio afectada por el estado del marcador, localización del partido, nivel de los oponentes o periodo de juego. Los incrementos goleadores fueron menores de lo que se podría esperar de una superioridad numérica de 2 minutos. Diferentes teorías psicológicas como la paralización ante situaciones de presión donde se espera un gran rendimiento pueden ayudar a explicar este hecho. Los últimos capítulos de la tesis enumeran las conclusiones principales y presentan diferentes aplicaciones prácticas que surgen de los tres estudios. Por último, se presentan las limitaciones y futuras líneas de investigación. ABSTRACT The purpose of this thesis was to investigate the offensive performance of elite handball teams when considering handball as a complex non-linear dynamical system. The time-dependent dynamic approach was adopted to assess teams’ performance during the game. The overall sample comprised the 240 games played in the season 2011-2012 of men’s Spanish Professional Handball League (ASOBAL League). In the subsequent analyses, only close games (final goal-difference ≤ 5; n = 142) were considered. Match status, game location, quality of opposition, and game period situational variables were incorporated into the analysis. Three studies composed the core of the thesis. In the first study, we analyzed the game-scoring coordination between the time series representing the scoring processes of the two opposing teams throughout the game. Autocorrelation, cross-correlation, double moving average, and Hilbert transform were used for analysis. The scoring processes of the teams presented a high consistency across all the games as well as strong in-phase modes of coordination in all the game contexts. The only differences were found when controlling for the game period. The coordination in the scoring processes of the teams was significantly lower for the 1st and 2nd period (0–10 min and 10–20 min), showing a clear increasing coordination behavior as the game progressed. This suggests that the first 20 minutes are those that break the game-scoring. In the second study, we analyzed the temporal effects (immediate effect, short-term effect, and medium-term effect) of team timeouts on teams’ scoring performance. Multiple linear regression models were used for the analysis. The results showed increments of 0.59, 1.40 and 1.85 goals for the periods within the first, third and fifth timeout ball possessions for the teams that requested the timeout. Conversely, significant negative effects on goals scored were found for the opponent teams, with decrements of 0.59, 1.43 and 2.04 goals for the same periods, respectively. The influence of situational variables on the scoring performance was only registered in certain game periods. Finally, in the third study, we analyzed the players’ exclusions temporal effects on teams’ scoring performance, for the teams that suffer the exclusion (numerical inferiority) and for the opponents (numerical superiority). Multiple linear regression models were used for the analysis. The results showed significant negative effects on the number of goals scored for the teams with one less player, with decrements of 0.25, 0.40, 0.61, 0.62, and 0.57 goals for the periods within the previous and post one, two, three, four and five minutes of play. For the opponent teams, the results showed positive effects, with increments of the same magnitude in the same game periods. This trend was not affected by match status, game location, quality of opposition, or game period. The scoring increments were smaller than might be expected from a 2-minute numerical playing superiority. Psychological theories such as choking under pressure situations where good performance is expected could contribute to explain this finding. The final chapters of the thesis enumerate the main conclusions and underline the main practical applications that arise from the three studies. Lastly, limitations and future research directions are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The extraordinary increase of new information technologies, the development of Internet, the electronic commerce, the e-government, mobile telephony and future cloud computing and storage, have provided great benefits in all areas of society. Besides these, there are new challenges for the protection of information, such as the loss of confidentiality and integrity of electronic documents. Cryptography plays a key role by providing the necessary tools to ensure the safety of these new media. It is imperative to intensify the research in this area, to meet the growing demand for new secure cryptographic techniques. The theory of chaotic nonlinear dynamical systems and the theory of cryptography give rise to the chaotic cryptography, which is the field of study of this thesis. The link between cryptography and chaotic systems is still subject of intense study. The combination of apparently stochastic behavior, the properties of sensitivity to initial conditions and parameters, ergodicity, mixing, and the fact that periodic points are dense, suggests that chaotic orbits resemble random sequences. This fact, and the ability to synchronize multiple chaotic systems, initially described by Pecora and Carroll, has generated an avalanche of research papers that relate cryptography and chaos. The chaotic cryptography addresses two fundamental design paradigms. In the first paradigm, chaotic cryptosystems are designed using continuous time, mainly based on chaotic synchronization techniques; they are implemented with analog circuits or by computer simulation. In the second paradigm, chaotic cryptosystems are constructed using discrete time and generally do not depend on chaos synchronization techniques. The contributions in this thesis involve three aspects about chaotic cryptography. The first one is a theoretical analysis of the geometric properties of some of the most employed chaotic attractors for the design of chaotic cryptosystems. The second one is the cryptanalysis of continuos chaotic cryptosystems and finally concludes with three new designs of cryptographically secure chaotic pseudorandom generators. The main accomplishments contained in this thesis are: v Development of a method for determining the parameters of some double scroll chaotic systems, including Lorenz system and Chua’s circuit. First, some geometrical characteristics of chaotic system have been used to reduce the search space of parameters. Next, a scheme based on the synchronization of chaotic systems was built. The geometric properties have been employed as matching criterion, to determine the values of the parameters with the desired accuracy. The method is not affected by a moderate amount of noise in the waveform. The proposed method has been applied to find security flaws in the continuous chaotic encryption systems. Based on previous results, the chaotic ciphers proposed by Wang and Bu and those proposed by Xu and Li are cryptanalyzed. We propose some solutions to improve the cryptosystems, although very limited because these systems are not suitable for use in cryptography. Development of a method for determining the parameters of the Lorenz system, when it is used in the design of two-channel cryptosystem. The method uses the geometric properties of the Lorenz system. The search space of parameters has been reduced. Next, the parameters have been accurately determined from the ciphertext. The method has been applied to cryptanalysis of an encryption scheme proposed by Jiang. In 2005, Gunay et al. proposed a chaotic encryption system based on a cellular neural network implementation of Chua’s circuit. This scheme has been cryptanalyzed. Some gaps in security design have been identified. Based on the theoretical results of digital chaotic systems and cryptanalysis of several chaotic ciphers recently proposed, a family of pseudorandom generators has been designed using finite precision. The design is based on the coupling of several piecewise linear chaotic maps. Based on the above results a new family of chaotic pseudorandom generators named Trident has been designed. These generators have been specially designed to meet the needs of real-time encryption of mobile technology. According to the above results, this thesis proposes another family of pseudorandom generators called Trifork. These generators are based on a combination of perturbed Lagged Fibonacci generators. This family of generators is cryptographically secure and suitable for use in real-time encryption. Detailed analysis shows that the proposed pseudorandom generator can provide fast encryption speed and a high level of security, at the same time. El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de Internet, el comercio electrónico, la administración electrónica, la telefonía móvil y la futura computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección de la información, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos electrónicos. La criptografía juega un papel fundamental aportando las herramientas necesarias para garantizar la seguridad de estos nuevos medios, pero es imperativo intensificar la investigación en este ámbito para dar respuesta a la demanda creciente de nuevas técnicas criptográficas seguras. La teoría de los sistemas dinámicos no lineales junto a la criptografía dan lugar a la ((criptografía caótica)), que es el campo de estudio de esta tesis. El vínculo entre la criptografía y los sistemas caóticos continúa siendo objeto de un intenso estudio. La combinación del comportamiento aparentemente estocástico, las propiedades de sensibilidad a las condiciones iniciales y a los parámetros, la ergodicidad, la mezcla, y que los puntos periódicos sean densos asemejan las órbitas caóticas a secuencias aleatorias, lo que supone su potencial utilización en el enmascaramiento de mensajes. Este hecho, junto a la posibilidad de sincronizar varios sistemas caóticos descrita inicialmente en los trabajos de Pecora y Carroll, ha generado una avalancha de trabajos de investigación donde se plantean muchas ideas sobre la forma de realizar sistemas de comunicaciones seguros, relacionando así la criptografía y el caos. La criptografía caótica aborda dos paradigmas de diseño fundamentales. En el primero, los criptosistemas caóticos se diseñan utilizando circuitos analógicos, principalmente basados en las técnicas de sincronización caótica; en el segundo, los criptosistemas caóticos se construyen en circuitos discretos u ordenadores, y generalmente no dependen de las técnicas de sincronización del caos. Nuestra contribución en esta tesis implica tres aspectos sobre el cifrado caótico. En primer lugar, se realiza un análisis teórico de las propiedades geométricas de algunos de los sistemas caóticos más empleados en el diseño de criptosistemas caóticos vii continuos; en segundo lugar, se realiza el criptoanálisis de cifrados caóticos continuos basados en el análisis anterior; y, finalmente, se realizan tres nuevas propuestas de diseño de generadores de secuencias pseudoaleatorias criptográficamente seguros y rápidos. La primera parte de esta memoria realiza un análisis crítico acerca de la seguridad de los criptosistemas caóticos, llegando a la conclusión de que la gran mayoría de los algoritmos de cifrado caóticos continuos —ya sean realizados físicamente o programados numéricamente— tienen serios inconvenientes para proteger la confidencialidad de la información ya que son inseguros e ineficientes. Asimismo una gran parte de los criptosistemas caóticos discretos propuestos se consideran inseguros y otros no han sido atacados por lo que se considera necesario más trabajo de criptoanálisis. Esta parte concluye señalando las principales debilidades encontradas en los criptosistemas analizados y algunas recomendaciones para su mejora. En la segunda parte se diseña un método de criptoanálisis que permite la identificaci ón de los parámetros, que en general forman parte de la clave, de algoritmos de cifrado basados en sistemas caóticos de Lorenz y similares, que utilizan los esquemas de sincronización excitador-respuesta. Este método se basa en algunas características geométricas del atractor de Lorenz. El método diseñado se ha empleado para criptoanalizar eficientemente tres algoritmos de cifrado. Finalmente se realiza el criptoanálisis de otros dos esquemas de cifrado propuestos recientemente. La tercera parte de la tesis abarca el diseño de generadores de secuencias pseudoaleatorias criptográficamente seguras, basadas en aplicaciones caóticas, realizando las pruebas estadísticas, que corroboran las propiedades de aleatoriedad. Estos generadores pueden ser utilizados en el desarrollo de sistemas de cifrado en flujo y para cubrir las necesidades del cifrado en tiempo real. Una cuestión importante en el diseño de sistemas de cifrado discreto caótico es la degradación dinámica debida a la precisión finita; sin embargo, la mayoría de los diseñadores de sistemas de cifrado discreto caótico no ha considerado seriamente este aspecto. En esta tesis se hace hincapié en la importancia de esta cuestión y se contribuye a su esclarecimiento con algunas consideraciones iniciales. Ya que las cuestiones teóricas sobre la dinámica de la degradación de los sistemas caóticos digitales no ha sido totalmente resuelta, en este trabajo utilizamos algunas soluciones prácticas para evitar esta dificultad teórica. Entre las técnicas posibles, se proponen y evalúan varias soluciones, como operaciones de rotación de bits y desplazamiento de bits, que combinadas con la variación dinámica de parámetros y con la perturbación cruzada, proporcionan un excelente remedio al problema de la degradación dinámica. Además de los problemas de seguridad sobre la degradación dinámica, muchos criptosistemas se rompen debido a su diseño descuidado, no a causa de los defectos esenciales de los sistemas caóticos digitales. Este hecho se ha tomado en cuenta en esta tesis y se ha logrado el diseño de generadores pseudoaleatorios caóticos criptogr áficamente seguros.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is still an open question whether subjective memory complaints (SMC) can actually be considered to be clinically relevant predictors for the development of an objective memory impairment and even dementia. There is growing evidence that suggests that SMC are associated with an increased risk of dementia and with the presence of biological correlates of early Alzheimer's disease. In this paper, in order to shed some light on this issue, we try to discern whether subjects with SMC showed a different profile of functional connectivity compared with subjects with mild cognitive impairment (MCI) and healthy elderly subjects. In the present study, we compare the degree of synchronization of brain signals recorded with magnetoencephalography between three groups of subjects (56 in total): 19 with MCI, 12 with SMC and 25 healthy controls during a memory task. Synchronization likelihood, an index based on the theory of nonlinear dynamical systems, was used to measure functional connectivity. Briefly, results show that subjects with SMC have a very similar pattern of connectivity to control group, but on average, they present a lower synchronization value. These results could indicate that SMC are representing an initial stage with a hypo-synchronization (in comparison with the control group) where the brain system is still not compensating for the failing memory networks, but behaving as controls when compared with the MCI subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the ‘traditional’ set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality. This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox. Here we present HERMES (http://hermes.ctb.upm.es), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabajo aborda el problema de modelizar sistemas din´amicos reales a partir del estudio de sus series temporales, usando una formulaci´on est´andar que pretende ser una abstracci´on universal de los sistemas din´amicos, independientemente de su naturaleza determinista, estoc´astica o h´ıbrida. Se parte de modelizaciones separadas de sistemas deterministas por un lado y estoc´asticos por otro, para converger finalmente en un modelo h´ıbrido que permite estudiar sistemas gen´ericos mixtos, esto es, que presentan una combinaci´on de comportamiento determinista y aleatorio. Este modelo consta de dos componentes, uno determinista consistente en una ecuaci´on en diferencias, obtenida a partir de un estudio de autocorrelaci´on, y otro estoc´astico que modeliza el error cometido por el primero. El componente estoc´astico es un generador universal de distribuciones de probabilidad, basado en un proceso compuesto de variables aleatorias, uniformemente distribuidas en un intervalo variable en el tiempo. Este generador universal es deducido en la tesis a partir de una nueva teor´ıa sobre la oferta y la demanda de un recurso gen´erico. El modelo resultante puede formularse conceptualmente como una entidad con tres elementos fundamentales: un motor generador de din´amica determinista, una fuente interna de ruido generadora de incertidumbre y una exposici´on al entorno que representa las interacciones del sistema real con el mundo exterior. En las aplicaciones estos tres elementos se ajustan en base al hist´orico de las series temporales del sistema din´amico. Una vez ajustados sus componentes, el modelo se comporta de una forma adaptativa tomando como inputs los nuevos valores de las series temporales del sistema y calculando predicciones sobre su comportamiento futuro. Cada predicci´on se presenta como un intervalo dentro del cual cualquier valor es equipro- bable, teniendo probabilidad nula cualquier valor externo al intervalo. De esta forma el modelo computa el comportamiento futuro y su nivel de incertidumbre en base al estado actual del sistema. Se ha aplicado el modelo en esta tesis a sistemas muy diferentes mostrando ser muy flexible para afrontar el estudio de campos de naturaleza dispar. El intercambio de tr´afico telef´onico entre operadores de telefon´ıa, la evoluci´on de mercados financieros y el flujo de informaci´on entre servidores de Internet son estudiados en profundidad en la tesis. Todos estos sistemas son modelizados de forma exitosa con un mismo lenguaje, a pesar de tratarse de sistemas f´ısicos totalmente distintos. El estudio de las redes de telefon´ıa muestra que los patrones de tr´afico telef´onico presentan una fuerte pseudo-periodicidad semanal contaminada con una gran cantidad de ruido, sobre todo en el caso de llamadas internacionales. El estudio de los mercados financieros muestra por su parte que la naturaleza fundamental de ´estos es aleatoria con un rango de comportamiento relativamente acotado. Una parte de la tesis se dedica a explicar algunas de las manifestaciones emp´ıricas m´as importantes en los mercados financieros como son los “fat tails”, “power laws” y “volatility clustering”. Por ´ultimo se demuestra que la comunicaci´on entre servidores de Internet tiene, al igual que los mercados financieros, una componente subyacente totalmente estoc´astica pero de comportamiento bastante “d´ocil”, siendo esta docilidad m´as acusada a medida que aumenta la distancia entre servidores. Dos aspectos son destacables en el modelo, su adaptabilidad y su universalidad. El primero es debido a que, una vez ajustados los par´ametros generales, el modelo se “alimenta” de los valores observables del sistema y es capaz de calcular con ellos comportamientos futuros. A pesar de tener unos par´ametros fijos, la variabilidad en los observables que sirven de input al modelo llevan a una gran riqueza de ouputs posibles. El segundo aspecto se debe a la formulaci´on gen´erica del modelo h´ıbrido y a que sus par´ametros se ajustan en base a manifestaciones externas del sistema en estudio, y no en base a sus caracter´ısticas f´ısicas. Estos factores hacen que el modelo pueda utilizarse en gran variedad de campos. Por ´ultimo, la tesis propone en su parte final otros campos donde se han obtenido ´exitos preliminares muy prometedores como son la modelizaci´on del riesgo financiero, los algoritmos de routing en redes de telecomunicaci´on y el cambio clim´atico. Abstract This work faces the problem of modeling dynamical systems based on the study of its time series, by using a standard language that aims to be an universal abstraction of dynamical systems, irrespective of their deterministic, stochastic or hybrid nature. Deterministic and stochastic models are developed separately to be merged subsequently into a hybrid model, which allows the study of generic systems, that is to say, those having both deterministic and random behavior. This model is a combination of two different components. One of them is deterministic and consisting in an equation in differences derived from an auto-correlation study and the other is stochastic and models the errors made by the deterministic one. The stochastic component is an universal generator of probability distributions based on a process consisting in random variables distributed uniformly within an interval varying in time. This universal generator is derived in the thesis from a new theory of offer and demand for a generic resource. The resulting model can be visualized as an entity with three fundamental elements: an engine generating deterministic dynamics, an internal source of noise generating uncertainty and an exposure to the environment which depicts the interactions between the real system and the external world. In the applications these three elements are adjusted to the history of the time series from the dynamical system. Once its components have been adjusted, the model behaves in an adaptive way by using the new time series values from the system as inputs and calculating predictions about its future behavior. Every prediction is provided as an interval, where any inner value is equally probable while all outer ones have null probability. So, the model computes the future behavior and its level of uncertainty based on the current state of the system. The model is applied to quite different systems in this thesis, showing to be very flexible when facing the study of fields with diverse nature. The exchange of traffic between telephony operators, the evolution of financial markets and the flow of information between servers on the Internet are deeply studied in this thesis. All these systems are successfully modeled by using the same “language”, in spite the fact that they are systems physically radically different. The study of telephony networks shows that the traffic patterns are strongly weekly pseudo-periodic but mixed with a great amount of noise, specially in the case of international calls. It is proved that the underlying nature of financial markets is random with a moderate range of variability. A part of this thesis is devoted to explain some of the most important empirical observations in financial markets, such as “fat tails”, “power laws” and “volatility clustering”. Finally it is proved that the communication between two servers on the Internet has, as in the case of financial markets, an underlaying random dynamics but with a narrow range of variability, being this lack of variability more marked as the distance between servers is increased. Two aspects of the model stand out as being the most important: its adaptability and its universality. The first one is due to the fact that once the general parameters have been adjusted , the model is “fed” on the observable manifestations of the system in order to calculate its future behavior. Despite the fact that the model has fixed parameters the variability in the observable manifestations of the system, which are used as inputs of the model, lead to a great variability in the possible outputs. The second aspect is due to the general “language” used in the formulation of the hybrid model and to the fact that its parameters are adjusted based on external manifestations of the system under study instead of its physical characteristics. These factors made the model suitable to be used in great variety of fields. Lastly, this thesis proposes other fields in which preliminary and promising results have been obtained, such as the modeling of financial risk, the development of routing algorithms for telecommunication networks and the assessment of climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nuestro cerebro contiene cerca de 1014 sinapsis neuronales. Esta enorme cantidad de conexiones proporciona un entorno ideal donde distintos grupos de neuronas se sincronizan transitoriamente para provocar la aparición de funciones cognitivas, como la percepción, el aprendizaje o el pensamiento. Comprender la organización de esta compleja red cerebral en base a datos neurofisiológicos, representa uno de los desafíos más importantes y emocionantes en el campo de la neurociencia. Se han propuesto recientemente varias medidas para evaluar cómo se comunican las diferentes partes del cerebro a diversas escalas (células individuales, columnas corticales, o áreas cerebrales). Podemos clasificarlos, según su simetría, en dos grupos: por una parte, la medidas simétricas, como la correlación, la coherencia o la sincronización de fase, que evalúan la conectividad funcional (FC); mientras que las medidas asimétricas, como la causalidad de Granger o transferencia de entropía, son capaces de detectar la dirección de la interacción, lo que denominamos conectividad efectiva (EC). En la neurociencia moderna ha aumentado el interés por el estudio de las redes funcionales cerebrales, en gran medida debido a la aparición de estos nuevos algoritmos que permiten analizar la interdependencia entre señales temporales, además de la emergente teoría de redes complejas y la introducción de técnicas novedosas, como la magnetoencefalografía (MEG), para registrar datos neurofisiológicos con gran resolución. Sin embargo, nos hallamos ante un campo novedoso que presenta aun varias cuestiones metodológicas sin resolver, algunas de las cuales trataran de abordarse en esta tesis. En primer lugar, el creciente número de aproximaciones para determinar la existencia de FC/EC entre dos o más señales temporales, junto con la complejidad matemática de las herramientas de análisis, hacen deseable organizarlas todas en un paquete software intuitivo y fácil de usar. Aquí presento HERMES (http://hermes.ctb.upm.es), una toolbox en MatlabR, diseñada precisamente con este fin. Creo que esta herramienta será de gran ayuda para todos aquellos investigadores que trabajen en el campo emergente del análisis de conectividad cerebral y supondrá un gran valor para la comunidad científica. La segunda cuestión practica que se aborda es el estudio de la sensibilidad a las fuentes cerebrales profundas a través de dos tipos de sensores MEG: gradiómetros planares y magnetómetros, esta aproximación además se combina con un enfoque metodológico, utilizando dos índices de sincronización de fase: phase locking value (PLV) y phase lag index (PLI), este ultimo menos sensible a efecto la conducción volumen. Por lo tanto, se compara su comportamiento al estudiar las redes cerebrales, obteniendo que magnetómetros y PLV presentan, respectivamente, redes más densamente conectadas que gradiómetros planares y PLI, por los valores artificiales que crea el problema de la conducción de volumen. Sin embargo, cuando se trata de caracterizar redes epilépticas, el PLV ofrece mejores resultados, debido a la gran dispersión de las redes obtenidas con PLI. El análisis de redes complejas ha proporcionado nuevos conceptos que mejoran caracterización de la interacción de sistemas dinámicos. Se considera que una red está compuesta por nodos, que simbolizan sistemas, cuyas interacciones se representan por enlaces, y su comportamiento y topología puede caracterizarse por un elevado número de medidas. Existe evidencia teórica y empírica de que muchas de ellas están fuertemente correlacionadas entre sí. Por lo tanto, se ha conseguido seleccionar un pequeño grupo que caracteriza eficazmente estas redes, y condensa la información redundante. Para el análisis de redes funcionales, la selección de un umbral adecuado para decidir si un determinado valor de conectividad de la matriz de FC es significativo y debe ser incluido para un análisis posterior, se convierte en un paso crucial. En esta tesis, se han obtenido resultados más precisos al utilizar un test de subrogadas, basado en los datos, para evaluar individualmente cada uno de los enlaces, que al establecer a priori un umbral fijo para la densidad de conexiones. Finalmente, todas estas cuestiones se han aplicado al estudio de la epilepsia, caso práctico en el que se analizan las redes funcionales MEG, en estado de reposo, de dos grupos de pacientes epilépticos (generalizada idiopática y focal frontal) en comparación con sujetos control sanos. La epilepsia es uno de los trastornos neurológicos más comunes, con más de 55 millones de afectados en el mundo. Esta enfermedad se caracteriza por la predisposición a generar ataques epilépticos de actividad neuronal anormal y excesiva o bien síncrona, y por tanto, es el escenario perfecto para este tipo de análisis al tiempo que presenta un gran interés tanto desde el punto de vista clínico como de investigación. Los resultados manifiestan alteraciones especificas en la conectividad y un cambio en la topología de las redes en cerebros epilépticos, desplazando la importancia del ‘foco’ a la ‘red’, enfoque que va adquiriendo relevancia en las investigaciones recientes sobre epilepsia. ABSTRACT There are about 1014 neuronal synapses in the human brain. This huge number of connections provides the substrate for neuronal ensembles to become transiently synchronized, producing the emergence of cognitive functions such as perception, learning or thinking. Understanding the complex brain network organization on the basis of neuroimaging data represents one of the most important and exciting challenges for systems neuroscience. Several measures have been recently proposed to evaluate at various scales (single cells, cortical columns, or brain areas) how the different parts of the brain communicate. We can classify them, according to their symmetry, into two groups: symmetric measures, such as correlation, coherence or phase synchronization indexes, evaluate functional connectivity (FC); and on the other hand, the asymmetric ones, such as Granger causality or transfer entropy, are able to detect effective connectivity (EC) revealing the direction of the interaction. In modern neurosciences, the interest in functional brain networks has increased strongly with the onset of new algorithms to study interdependence between time series, the advent of modern complex network theory and the introduction of powerful techniques to record neurophysiological data, such as magnetoencephalography (MEG). However, when analyzing neurophysiological data with this approach several questions arise. In this thesis, I intend to tackle some of the practical open problems in the field. First of all, the increase in the number of time series analysis algorithms to study brain FC/EC, along with their mathematical complexity, creates the necessity of arranging them into a single, unified toolbox that allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of them. I developed such a toolbox for this aim, it is named HERMES (http://hermes.ctb.upm.es), and encompasses several of the most common indexes for the assessment of FC and EC running for MatlabR environment. I believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis and will entail a great value for the scientific community. The second important practical issue tackled in this thesis is the evaluation of the sensitivity to deep brain sources of two different MEG sensors: planar gradiometers and magnetometers, in combination with the related methodological approach, using two phase synchronization indexes: phase locking value (PLV) y phase lag index (PLI), the latter one being less sensitive to volume conduction effect. Thus, I compared their performance when studying brain networks, obtaining that magnetometer sensors and PLV presented higher artificial values as compared with planar gradiometers and PLI respectively. However, when it came to characterize epileptic networks it was the PLV which gives better results, as PLI FC networks where very sparse. Complex network analysis has provided new concepts which improved characterization of interacting dynamical systems. With this background, networks could be considered composed of nodes, symbolizing systems, whose interactions with each other are represented by edges. A growing number of network measures is been applied in network analysis. However, there is theoretical and empirical evidence that many of these indexes are strongly correlated with each other. Therefore, in this thesis I reduced them to a small set, which could more efficiently characterize networks. Within this framework, selecting an appropriate threshold to decide whether a certain connectivity value of the FC matrix is significant and should be included in the network analysis becomes a crucial step, in this thesis, I used the surrogate data tests to make an individual data-driven evaluation of each of the edges significance and confirmed more accurate results than when just setting to a fixed value the density of connections. All these methodologies were applied to the study of epilepsy, analysing resting state MEG functional networks, in two groups of epileptic patients (generalized and focal epilepsy) that were compared to matching control subjects. Epilepsy is one of the most common neurological disorders, with more than 55 million people affected worldwide, characterized by its predisposition to generate epileptic seizures of abnormal excessive or synchronous neuronal activity, and thus, this scenario and analysis, present a great interest from both the clinical and the research perspective. Results revealed specific disruptions in connectivity and network topology and evidenced that networks’ topology is changed in epileptic brains, supporting the shift from ‘focus’ to ‘networks’ which is gaining importance in modern epilepsy research.