41 resultados para Deep space optical communication
Resumo:
This paper presents a simple gravity evaluation model for large reflector antennas and the experimental example for a case study of one uplink array of 4x35-m antennas at X and Ka band. This model can be used to evaluate the gain reduction as a function of the maximum gravity distortion, and also to specify this at system designer level. The case study consists of one array of 35-m antennas for deep space missions. Main issues due to the gravity effect have been explored with Monte Carlo based simulation analysis.
Resumo:
A new proposal to have secure communications in a system is reported. The basis is the use of a synchronized digital chaotic systems, sending the information signal added to an initial chaos. The received signal is analyzed by another chaos generator located at the receiver and, by a logic boolean function of the chaotic and the received signals, the original information is recovered. One of the most important facts of this system is that the bandwidth needed by the system remain the same with and without chaos.
Resumo:
Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML?fiber couple.
Resumo:
Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples.
Resumo:
Protecting signals is one of the main tasks in information transmission. A large number of different methods have been employed since many centuries ago. Most of them have been based on the use of certain signal added to the original one. When the composed signal is received, if the added signal is known, the initial information may be obtained. The main problem is the type of masking signal employed. One possibility is the use of chaotic signals, but they have a first strong limitation: the need to synchronize emitter and receiver. Optical communications systems, based on chaotic signals, have been proposed in a large number of papers. Moreover, because most of the communication systems are digital and conventional chaos generators are analogue, a conversion analogue-digital is needed. In this paper we will report a new system where the digital chaos is obtained from an optically programmable logic structure. This structure has been employed by the authors in optical computing and some previous results in chaotic signals have been reported. The main advantage of this new system is that an analogue-digital conversion is not needed. Previous works by the authors employed Self-Electrooptical Effect Devices but in this case more conventional structures, as semiconductor laser amplifiers, have been employed. The way to analyze the characteristics of digital chaotic signals will be reported as well as the method to synchronize the chaos generators located in the emitter and in the receiver.
Resumo:
New telecom wavelength sources of polarization entangled photon pairs allow the distribution of entanglement through metro-access networks using standard equipment. This is essential to ease the deployment of future applications that can profit from quantum entanglement, such as quantum cryptography.
Resumo:
Optical filters are crucial elements in optical communication networks. Their influence toward the optical signal will affect the communication quality seriously. In this paper we will study and simulate the optical signal impairment and crosstalk penalty caused by different kinds of filters, which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (F-P). Signal impairment from filter concatenation effect and crosstalk penalty from out-band and in-band are analyzed from Q-penalty, eye opening penalty (EOP) and optical spectrum. The simulation results show that signal impairment and crosstalk penalty induced by the Butterworth filter is the minimum among these four types of filters. Signal impairment caused by filter concatenation effect shows that when center frequency of all filters is aligned perfectly with the laser's frequency, 12 50-GHz Butterworth filters can be cascaded, with 1-dB EOP. This value is reduced to 9 when the center frequency is misaligned with 5 GHz. In the 50-GHz channel spacing DWDM networks, total Q-penalty induced by a pair of Butterworth filters based demultiplexer and multiplexer is lower than 0.5 dB when the filter bandwidth is in the range of 42-46 GHz.
Resumo:
El peso específico de las Comunicaciones Ópticas dentro del ámbito de la Ingeniería de Telecomunicación no cesa de crecer. Sus aplicaciones, inicialmente dedicadas a las grandes líneas que enlazan las centrales de conmutación, alcanzan en la actualidad, como se ha mencionado, hasta los mismos hogares. Los progresos en este campo, con una sucesión sin tregua, no sólo se destinan a incrementar la capacidad de transmisión de los sistemas, sino a ampliar la diversidad de los procesos que sobre las señales se efectúan en el dominio óptico. Este dinamismo demanda a los profesionales del sector una revisión y actualización de sus conocimientos que les permitan resolver con soltura las cuestiones de su actividad de ingeniería. Por otra parte, durante los últimos años la importancia de las Comunicaciones Ópticas también se ha reflejado en las diferentes titulaciones de Ingenierías de Telecomunicación, cuyos planes de estudio contemplan esta materia tanto en asignaturas troncales como optativas. A menudo, las fuentes de información disponibles abordan esta disciplina con una orientación principalmente teórica. Profesionales y estudiantes de Ingeniería, pues, frente a esta materia se encuentran unos temas que tratan fenómenos físicos complejos, abundantes en conceptos abstractos y con un florido aparato matemático, pero muchas veces carentes de una visión práctica, importantísima en ingeniería, y que es, en definitiva, lo que se exige a alumnos e ingenieros: saber resolver problemas y cuestiones relacionados con las Comunicaciones Ópticas. Los sistemas de comunicaciones ópticas, y en especial aquellos que utilizan la fibra óptica como medio para la transmisión de información, como se ha dicho, están alcanzando un desarrollo importante en el campo de las telecomunicaciones. Las bondades que ofrece la fibra, de sobra conocidos y mencionados en el apartado que antecede (gran ancho de banda, inmunidad total a las perturbaciones de origen electromagnético, así como la no producción de interferencias, baja atenuación, etc.), han hecho que, hoy en día, sea uno de los campos de las llamadas tecnologías de la información y la comunicación que presente mayor interés por parte de científicos, ingenieros, operadores de telecomunicaciones y, por supuesto, usuarios. Ante esta realidad, el objetivo y justificación de la realización de este proyecto, por tanto, no es otro que el de acercar esta tecnología al futuro ingeniero de telecomunicaciones, y/o a cualquier persona con un mínimo de interés en este tema, y mostrarle de una forma práctica y visual los diferentes fenómenos que tienen lugar en la transmisión de información por medio de fibra óptica, así como los diferentes bloques y dispositivos en que se divide dicha comunicación. Para conseguir tal objetivo, el proyecto fin de carrera aquí presentado tiene como misión el desarrollo de una interfaz gráfica de usuario (GUI, del inglés Graphic User Interface) que permita a aquel que la utilice configurar de manera sencilla cada uno de los bloques en que se compone un enlace punto a punto de fibra óptica. Cada bloque en que se divide este enlace estará compuesto por varias opciones, que al elegir y configurar como se quiera, hará variar el comportamiento del sistema y presentará al usuario los diferentes fenómenos presentes en un sistema de comunicaciones ópticas, como son el ruido, la dispersión, la atenuación, etc., para una mejor comprensión e interiorización de la teoría estudiada. Por tanto, la aplicación, implementada en MATLAB, fruto de la realización de este PFC pretende servir de complemento práctico para las asignaturas dedicadas al estudio de las comunicaciones ópticas a estudiantes en un entorno amigable e intuitivo. Optical Communications in the field of Telecommunications Engineering continues to grow. Its applications, initially dedicated to large central lines that link the switching currently achieved, as mentioned, to the same household nowadays. Progress in this field, with a relentless succession, not only destined to increase the transmission capacity of the systems, but to broaden the diversity of the processes that are performed on the signals in the optical domain. This demands to professionals reviewing and updating their skills to enable them resolve issues easily. Moreover, in recent years the importance of optical communications is also reflected in the different degrees of Telecommunications Engineering, whose curriculum contemplates this area. Often, the information sources available to tackle this discipline mainly theoretical orientation. Engineering professionals and students are faced this matter are few topics discussing complex physical phenomena, and abstract concepts abundant with a flowery mathematical apparatus, but often wotput a practical, important in engineering, and that is what is required of students and engineers: knowing how to solve problems and issues related to optical communications. Optical communications systems, particularly those using optical fiber as a medium for transmission of information, as stated, are reaching a significant development in the field of telecommunications. The advantages offered by the fiber, well known and referred to in the preceding paragraph (high bandwidth, immunity to electromagnetic disturbances of origin and production of non interference, low attenuation, etc..), have made today, is one of the fields of information and communication technology that this increased interest by scientists, engineers, telecommunications operators and, of course, users. Given this reality, the purpose and justification of this project is not other than to bring this technology to the future telecommunications engineer, and / or anyone with a passing interest in this subject, and showing of a practical and various visual phenomena occurring in the transmission of information by optical fiber, as well as different blocks and devices in which said communication is divided. To achieve that objective, the final project presented here has as its mission the development of a graphical user interface (GUI) that allows the user to configure each of the blocks in which divided a point-to-point optical fiber. Each block into which this link will consist of several options to choose and configure it as you like, this will change the behavior of the system and will present to the user with the different phenomena occurring in an optical communication system, such as noise, dispersion, attenuation, etc., for better understanding and internalization of the theory studied. Therefore, the application, implemented in MATLAB, the result of the completion of the thesis is intended to complement practical subjects for the study of optical communications students in a friendly and intuitive environment.
Resumo:
We present an educational software addressed to the students of optical communication courses, for a simple visualization of the basic dynamic processes of semiconductor lasers. The graphic interface allows the user to choose the laser and the modulation parameters and it plots the laser power output and instantaneous frequency versus time. Additionally, the optical frequency variations are numerically shifted into the audible frequency range in order to produce a sound wave from the computer loudspeakers. Using the proposed software, the student can simultaneously see and hear how the laser intensity and frequency change, depending on the modulation and device parameters.
Resumo:
The main application of hybrid Optical Bistable devices to optical Communication and Optical Computing are reported. The employed nonlinear has been liquid crystal that modelizes very well the general behaviour of OBD's.
Resumo:
In this paper we present a new optical communication local network by optical fiber and laser, which is being installed between some of the buildings of the U.P.M. for a better scientific and management intercommunication, among all of them.
Resumo:
The semiconductor laser diodes that are typically used in applications of optical communications, when working as amplifiers, present under certain conditions optical bistability, which is characterized by abruptly switching between two different output states and an associated hysteresis cycle. This bistable behavior is strongly dependent on the frequency detuning between the frequency of the external optical signal that is injected into the semiconductor laser amplifier and its own emission frequency. This means that small changes in the wavelength of an optical signal applied to a laser amplifier causes relevant changes in the characteristics of its transfer function in terms of the power requirements to achieve bistability and the width of the hysteresis. This strong dependence in the working characteristics of semiconductor laser amplifiers on frequency detuning suggest the use of this kind of devices in optical sensing applications for optical communications, such as the detection of shifts in the emission wavelength of a laser, or detect possible interference between adjacent channels in DWDM (Dense Wavelength Division Multiplexing) optical communication networks
Resumo:
Eye-safety requirements in important applications like LIDAR or Free Space Optical Communications make specifically interesting the generation of high power, short optical pulses at 1.5 um. Moreover, high repetition rates allow reducing the error and/or the measurement time in applications involving pulsed time-of-flight measurements, as range finders, 3D scanners or traffic velocity controls. The Master Oscillator Power Amplifier (MOPA) architecture is an interesting source for these applications since large changes in output power can be obtained at GHz rates with a relatively small modulation of the current in the Master Oscillator (MO). We have recently demonstrated short optical pulses (100 ps) with high peak power (2.7 W) by gain switching the MO of a monolithically integrated 1.5 um MOPA. Although in an integrated MOPA the laser and the amplifier are ideally independent devices, compound cavity effects due to the residual reflectance at the different interfaces are often observed, leading to modal instabilities such as self-pulsations.
Resumo:
In this work, educational software for intuitive understanding of the basic dynamic processes of semiconductor lasers is presented. The proposed tool is addressed to the students of optical communication courses, encouraging self consolidation of the subjects learned in lectures. The semiconductor laser model is based on the well known rate equations for the carrier density, photon density and optical phase. The direct modulation of the laser is considered with input parameters which can be selected by the user. Different options for the waveform, amplitude and frequency of thpoint. Simulation results are plotted for carrier density and output power versus time. Instantaneous frequency variations of the laser output are numerically shifted to the audible frequency range and sent to the computer loudspeakers. This results in an intuitive description of the “chirp” phenomenon due to amplitude-phase coupling, typical of directly modulated semiconductor lasers. In this way, the student can actually listen to the time resolved spectral content of the laser output. By changing the laser parameters and/or the modulation parameters,consequent variation of the laser output can be appreciated in intuitive manner. The proposed educational tool has been previously implemented by the same authors with locally executable software. In the present manuscript, we extend our previous work to a web based platform, offering improved distribution and allowing its use to the wide audience of the web.
Resumo:
La presente tesis fue ideada con el objetivo principal de fabricar y caracterizar fotodiodos Schottky en capas de ZnMgO y en estructuras de pozo cuántico ZnMgO/ZnO para la detección de luz UV. La elección de este material semiconductor vino motivada por la posibilidad que ofrece de detectar y procesar señales simultáneamente, en un amplio margen de longitudes de onda, al igual que su más directo competidor el GaN. En esta memoria se da en primer lugar una visión general de las propiedades estructurales y ópticas del ZnO, prestando especial atención a su ternario ZnMgO y a las estructuras de pozo cuántico ZnMgO/ZnO. Además, se han desarrollado los conocimientos teóricos necesarios para una mejor compresión y discusión de los resultados alcanzados. En lo que respecta a los resultados de esta memoria, en esencia, estos se dividen en dos bloques. Fotodiodos desarrollados sobre capas delgadas de ZnMgO no-polar, y sobre estructuras de pozo cuántico de ZnMgO/ZnO no-polares y semipolares Fotodiodos de capas delgadas de ZnMgO. Es bien conocido que la adición de Mg a la estructura cristalina del ZnO desplaza el borde de absorción hacia energías mayores en el UV. Se ha aprovechado esto para fabricar fotodiodos Schottky sobre capas de ZnMgO crecidas por MOCVD y MBE, los cuales detecten en un ventana de energías comprendida entre 3.3 a 4.6 eV. Sobre las capas de ZnMgO, con diferentes contenidos de Mg(5.6-18.0 %), crecidas por MOCVD se han fabricado fotodiodos Schottky. Se han estudiado en detalle las curvas corrientevoltaje (I-V). Seguidamente, se ha realizado un análisis de la respuesta espectral bajo polarización inversa. Tanto los valores de responsividad obtenidos como el contraste UV/VIS están claramente aumentados por la presencia de ganancia. Paralelamente, se han realizado medidas de espectroscopia de niveles profundos (DLOS), identificándose la presencia de dos niveles profundos de carácter aceptor. El papel desempeñado por estos en la ganancia ha sido analizado meticulosamente. Se ha demostrado que cuando estos son fotoionizados son responsables directos del gran aumento de la corriente túnel que se produce a través de la barrera Schottky, dando lugar a la presencia de la ganancia observada, que además resulta ser función del flujo de fotones incidente. Para extender el rango detección hasta 4.6 eV se fabricaron fotodiodos sobre capas de ZnMgO de altísima calidad cristalina crecidas por MBE. Sobre estos se ha realizado un riguroso análisis de las curvas I-V y de las curvas capacidad-voltaje (CV), para posteriormente identificar los niveles profundos presentes en el material, mediante la técnica de DLOS. Así mismo se ha medido la respuesta espectral de los fotodetectores, la cual muestra un corte abrupto y un altísimo contraste UV/VIS. Además, se ha demostrado como estos son perfectos candidatos para la detección de luz en la región ciega al Sol. Por otra parte, se han fabricado fotodiodos MSM sobre estas mismas capas. Se han estudiado las principales figuras de mérito de estos, observándose unas corrientes bajas de oscuridad, un contraste UV/VIS de 103, y la presencia de fotocorriente persistente. Fotodiodos Schottky de pozos cuánticos de ZnO/ZnMgO. En el segundo bloque de esta memoria, con el objeto final de clarificar el impacto que tiene el tratamiento del H2O2 sobre las características optoelectrónicas de los dispositivos, se ha realizado un estudio detallado, en el que se han analizado por separado fotodiodos tratados y no tratados con H2O2, fabricados sobre pozos cuánticos de ZnMgO/ZnO. Se ha estudiado la respuesta espectral en ambos casos, observándose la presencia de ganancia en los dos. A través de un análisis meticuloso de las características electrónicas y optoeletrónicas de los fotodiodos, se han identificado dos mecanismos de ganancia internos diferentes en función de que la muestra sea tratada o no-tratada. Se han estudiado fotodetectores sensibles a la polarización de la luz (PSPDs) usando estructuras de pozo cuántico no-polares y semipolares sobre sustratos de zafiro y sustratos de ZnO. En lo que respecta a los PSPDs sobre zafiro, en los cuales el pozo presenta una tensión acumulada en el plano, se ha visto que el borde de absorción se desplaza _E _21 meV con respecto a luz linealmente polarizada perpendicular y paralela al eje-c, midiéndose un contraste (RE || c /RE c)max _ 6. Con respecto a los PSPDs crecidos sobre ZnO, los cuales tienen el pozo relajado, se ha obtenido un 4E _30-40, y 21 meV para las heteroestructuras no-polar y semipolar, respectivamente. Además el máximo contraste de responsividad fue de (RE || c /RE c)max _ 6 . Esta sensibilidad a la polarización de la luz ha sido explicada en términos de las transiciones excitónicas entre la banda de conducción y las tres bandas de valencia. ABSTRACT The main goal of the present thesis is the fabrication and characterization of Schottky photodiodes based on ZnMgO layers and ZnMgO / ZnO quantum wells (QWs) for the UV detection. The decision of choosing this semiconductor was mainly motivated by the possibility it offers of detecting and processing signals simultaneously in a wide range of wavelengths like its main competitor GaN. A general overview about the structural and optical properties of ZnO, ZnMgO layers and ZnMgO/ZnO QWs is given in the first part of this thesis. Besides, it is shown the necessary theoretical knowledge for a better understanding of the discussion presented here. The results of this thesis may be divided in two parts. On the one hand, the first part is based on studying non-polar ZnMgO photodiodes. On the other hand, the second part is focused on the characterization of non-polar and semipolar ZnMgO / ZnO QWs Schottky photodiodes. ZnMgO photodiodes. It is well known that the addition of Mg in the crystal structure of ZnO results in a strong blue-shift of the ZnO band-gap. Taking into account this fact Schottky photodiodes were fabricated on ZnMgO layers grown by MOCVD and MBE. Concerning ZnMgO layers grown by MOCVD, a series of Schottky photodiodes were fabricated, by varying the Mg content from 5.6% to 18 %. Firstly, it has been studied in detail the current-voltage curves. Subsequently, spectral response was analyzed at reverse bias voltage. Both the rejection ratio and the responsivity are shown to be largely enhanced by the presence of an internal gain mechanism. Simultaneously, measurements of deep level optical spectroscopy were carried out, identifying the presence of two acceptor-like deep levels. The role played for these in the gain observed was studied in detail. It has been demonstrated that when these are photoionized cause a large increase in the tunnel current through the Schottky barrier, yielding internal gains that are a function of the incident photon flux. In order to extend the detection range up to 4.6 eV, photodiodes ZnMgO grown by MBE were fabricated. An exhaustive analysis of the both I-V and CV characteristics was performed. Once again, deep levels were identified by using the technique DLOS. Furthermore, the spectral response was measured, observing sharp absorption edges and high UV/VIS rejections ratio. The results obtained have confirmed these photodiodes are excellent candidates for the light detection in the solar-blind region. In addition, MSM photodiodes have also been fabricated on the same layers. The main figures of merit have been studied, showing low dark currents, a large UV/VIS rejection ratio and persistent photocurrent. ZnMgO/ZnO QWs photodiodes. The second part was focused on ZnMgO/ ZnO QWs. In order to clarify the impact of the H2O2 treatment on the performance of the Schottky diodes, a comparative study using treated and untreated ZnMgO/ZnO photodiodes has been carried out. The spectral response in both cases has shown the presence of gain, under reverse bias. Finally, by means of the analysis of electronic and optoelectronic characteristics, two different internal gain mechanisms have been indentified in treated and non-treated material. Light polarization-sensitive UV photodetectors (PSPDs) using non-polar and semipolar ZnMgO/ZnO multiple quantum wells grown both on sapphire and ZnO substrates have been demonstrated. For the PSPDs grown on sapphire with anisotropic biaxial in-plain strain, the responsivity absorption edge shifts by _E _21 meV between light polarized perpendicular and parallel to the c-axis, and the maximum responsivity contrast is (RE || c /RE c)max _ 6 . For the PSPDs grown on ZnO, with strain-free quantum wells, 4E _30-40, and 21 meV for non-polar and semipolar heterostructures, and maximum (R /R||)max _10. for non-polar heterostructure was achieved. These light polarization sensitivities have been explained in terms of the excitonic transitions between the conduction and the three valence bands.