46 resultados para Damage model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous damage models have been developed in order to analyze seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of continuum damage mechanics are more consistent with the definition of damage as a phenomenon with mechanical consequences because they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, most of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Cipollina et al. [Cipollina A, López-Hinojosa A, Flórez-López J. Comput Struct 1995;54:1113–26] is made in order to include the low cycle fatigue. Such a model employs in its formulation irreversible thermodynamics and internal state variable theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of infill walls on the behaviour of frames is widely recognized, and, for several decades now, has been the subject of numerous experimental investigations. However, the analytical modeling of infilled panels and frames under in-plane loading is difficult and generally unreliable. From the point of view of the simulation technique the models may be divided into micromodels and simplified (or macro-) models. Based on the equivalent strut approach (simplified model), in this paper a damage model is proposed for the characterization of masonry walls submitted to lateral cyclic loads. The model, developed along the lines of the Continuum Damage Mechanics, have the advantages of including explicitly the coupling between damage and mechanical behaviour and so is consistent with the definition of damage as a phenomenon with mechanical consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous damage models have been developed in order to analyse the seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of Continuum Damage Mechanics are more consistent with the definition of damage like a phenomenon with mechanical consequences as they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, many of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Flórez is made in order to include the low cycle fatigue. Such model employs in its formulation irreversible thermodynamics and internal state variable theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelo de daño no local definido a materiales fibrados. Este modelo se aplica al estudio de problemas típicos en la biomecánica de los tejidos blandos, como las paredes arteriales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-local gradient-based damage formulation within a geometrically non-linear setting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy which is additively composed of an isotropic matrix and of an anisotropic fibre-reinforced material, respectively. The inelastic constitutive response is governed by a scalar [1–d]-type damage formulation, where only the anisotropic elastic part is assumed to be affected by the damage. Following the concept in Dimitrijević and Hackl [28], the local free energy function is enhanced by a gradient-term. This term essentially contains the gradient of the non-local damage variable which, itself, is introduced as an additional independent variable. In order to guarantee the equivalence between the local and non-local damage variable, a penalisation term is incorporated within the free energy function. Based on the principle of minimum total potential energy, a coupled system of Euler–Lagrange equations, i.e., the balance of linear momentum and the balance of the non-local damage field, is obtained and solved in weak form. The resulting coupled, highly non-linear system of equations is symmetric and can conveniently be solved by a standard incremental-iterative Newton–Raphson-type solution scheme. Several three-dimensional displacement- and force-driven boundary value problems—partially motivated by biomechanical application—highlight the mesh-objective characteristics and constitutive properties of the model and illustratively underline the capabilities of the formulation proposed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-local gradient-based damage formulation within a geometrically non-linear set- ting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy function which is additively composed by an isotropic neo-Hookean matrix and by an anisotropic fibre-reinforced material based on the model proposed by T. Gasser, R. Ogden, and G. Holzapfel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material properties of soft tissues are highly conditioned by the hierarchical structure of this kind of composites. These collagen-based tissues present a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. As the structural mechanisms that control the degradation of soft tissues are related with the behaviour of its fundamental constituents, the relationship between the molecular and intermolecular properties and the tissue behaviour needs to be studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material properties of soft fibrous tissues are highly conditioned by the hierarchical structure of this kind of composites. Collagen based tissues present, at decreasing length scales, a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. Understanding the mechanical behaviour at nano-scale level is critical to accurately incorporate this structural information in phenomenological damage models. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale. A Hodge–Petruska two-dimensional model has been used to describe the fibrils as staggered arrays of tropocollagen molecules. After a mechanical characterisation of each of the fibril components, two fibril failures modes have been defined related with two planes of weakness. A phenomenological continuous damage model with regularised softening was presented along with meso-structurally based definitions for its material parameters. Finally, numerical analysis at fibril, fibre and tissue levels are presented to show the capabilities of the model

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, robustness and stability of continuum damage models applied to material failure in soft tissues are addressed. In the implicit damage models equipped with softening, the presence of negative eigenvalues in the tangent elemental matrix degrades the condition number of the global matrix, leading to a reduction of the computational performance of the numerical model. Two strategies have been adapted from literature to improve the aforementioned computational performance degradation: the IMPL-EX integration scheme [Oliver,2006], which renders the elemental matrix contribution definite positive, and arclength-type continuation methods [Carrera,1994], which allow to capture the unstable softening branch in brittle ruptures. The IMPL-EX integration scheme has as a major drawback the need to use small time steps to keep numerical error below an acceptable value. A convergence study, limiting the maximum allowed increment of internal variables in the damage model, is presented. Finally, numerical simulation of failure problems with fibre reinforced materials illustrates the performance of the adopted methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, robustness and stability of continuum damage models applied to material failure in soft tissues are addressed. In the implicit damage models equipped with softening, the presence of negative eigenvalues in the tangent elemental matrix degrades the condition number of the global matrix, leading to a reduction of the computational performance of the numerical model. Two strategies have been adapted from literature to improve the aforementioned computational performance degradation: the IMPL-EX integration scheme [Oliver,2006], which renders the elemental matrix contribution definite positive, and arclength-type continuation methods [Carrera,1994], which allow to capture the unstable softening branch in brittle ruptures. The IMPL-EX integration scheme has as a major drawback the need to use small time steps to keep numerical error below an acceptable value. A convergence study, limiting the maximum allowed increment of internal variables in the damage model, is presented. Finally, numerical simulation of failure problems with fibre reinforced materials illustrates the performance of the adopted methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caracterización de los procesos de disipación mecánica basándose en la microestructura de los tejidos blandos. We present a continuous damage model with regularized softening (smeared crack models) for fiber reinforced soft tissues. Material parameters of the continuous model derive from the mesoscopic scale. In the mesoscopic scale continuum is considered as a collagenous fibrilreinforced composite. We want to study the continnumlevel response as a function of the nanoscale properties of the collagen and the adherent forces between the tropocollagen molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000 ppm were tested at 20 �C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000 ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000 ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical analysis is a suitable tool in the design of complex reinforced concrete structures under extreme impulsive loadings such as impacts or explosions at close range. Such events may be the result of terrorist attacks. Reinforced concrete is commonly used for buildings and infrastructures. For this reason, the ability to accurately run numerical simulations of concrete elements subjected to blast loading is needed. In this context, reliable constitutive models for concrete are of capital importance. In this research numerical simulations using two different constitutive models for concrete (Continuous Surface Cap Model and Brittle Damage Model) have been carried out using LS-DYNA. Two experimental benchmark tests have been taken as reference. The results of the numerical simulations with the aforementioned constitutive models show different abilities to accurately represent the structural response of the reinforced concrete elements studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many studies have been developed to analyze the structural seismic behavior through the damage index concept. The evaluation of this index has been employed to quantify the safety of new and existing structures and, also, to establish a framework for seismic retrofitting decision making of structures. Most proposed models are based in a posterthquake evaluation in such a way they uncouple the structural response from the damage evaluation. In this paper, a generalization of the model by Flórez-López (1995) is proposed. The formulation employs irreversible thermodynamics and internal state variable theory applied to the study of beams and frames and it allows and explicit coupling between the degradation and the structural mechanical behavior. A damage index es defined in order to model elastoplasticity coupled with damage and fatigue damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last years many studies have been developed to analyze the seismic behavior throug the damage concept. In fact, the evaluation of the structural damage is important in order to quantify the safety of new and existing structures and, also, to establish a framework for seismic retrofitting decision making of structures. Most proposed models are based on a post-earthquake evaluation in such a way they uncouple the computation of the structural response from that of damage. However, there are other models which include explicity the existing coupling between the degradation and the structural mechanical beaviour. Those models are closer to the physical reality and its formulation is based on the principles of Continuum Damage Mechanics. In the present work, a coupled model is formulated using a simplified application of the Continuum Damage Mechanics to the analysis of frames and allows its representation in standard finite element programs. This work is part of the activities developed by the Structural Mechanics Department (UPM) within ICONS (European Research Project on Innovative Seismic Design Concepts for New and Existing Structures).