19 resultados para Conductive wires


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible deleterious effects of coiling and long time storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of Standards are fulfilled (minimum coiling diameters) these effects can be neglected. However, some other factors like previous residual stresses, long time storage or storage at high temperatures, can trigger or emphasize this damage on the material. In the authors? opinion it is recommended to control the final curvature of the wires after uncoiling prior to prestressin, as required in some Standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prestressed structures are susceptible to relaxation losses which are of significant importance in structural design. After being manufactured, prestressing wires are coiled to make their storage and transportation easier. The possible deleterious effects of this operation on the stress relaxation behavior of prestressing steel wires are usually neglected, though it has been noticed by manufacturers and contractors that when relaxation tests are carried out after a long-time storage, on occasions relaxation losses are higher than those measured a short time after manufacturing. The influence of coiling on the relaxation losses is checked by means of experimental work and confirmed with a simple analytical model. The results show that some factors like initial residual stresses, excessively long-time storage or storage at high temperatures, can trigger or accentuate this damage. However, it is also shown that if the requirements of standards are fulfilled (minimum coiling diameters) these effects can be neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the electron-beam (e-beam) lithography process developed to manufacture nano interdigital transducers (IDTs) to be used in high frequency (GHz) surface acoustic wave (SAW) applications. The combination of electron-beam (e-beam) lithography and lift-off process is shown to be effective in fabricating well-defined IDT finger patterns with a line width below 100 nm with a good yield. Working with insulating piezoelectric substrates brings about e-beam deflection. It is also shown how a very thin organic anti-static layer works well in avoiding this charge accumulation during e-beam lithography on the resist layer. However, the use of this anti-static layer is not required with the insulating piezoelectric layer laying on a semiconducting substrate such as highly doped silicon. The effect of the e-beam dose on a number of different layers (of insulating, insulating on semiconducting, semiconducting, and conductive natures) is provided. Among other advantages, the use of reduced e-beam doses increases the manufacturing time. The principal aim of this work is to explain the interrelation among e-beam dose, substrate nature and IDT structure. An extensive study of the e-beam lithography of long IDT-fingers is provided, in a wide variety of electrode widths, electrode numbers and electrode pitches. It is worthy to highlight that this work shows the influence of the e-beam dose on five substrates of different conductive nature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible deleterious effects of coiling and long-term storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of standards are fulfilled (minimum coiling diameters), these effects can be neglected. However, some other factors, such as previous residual stresses, long-term storage or storage at high temperatures, can trigger or emphasize this damage to the material. In the authors' opinion, checking the final curvature of the wires after uncoiling prior to prestressing, as required in some standards, is to be recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of cost-effective patterning processes a novel technique that saves photolithographic processing steps, easily scalable to wide area production, is proposed. It consists of a tip-probe, which is biased with respect to a conductive substrate and slides on it, keeping contact with the material. The sliding tip leaves an insulating path (which currently is as narrow as 30 μm) across the material, which enables the drawing of tracks and pads electrically insulated from the surroundings. This ablation method, called arc-erosion, requires an experimental set up that had to be customized for this purpose and is described. Upon instrumental monitoring, a brief proposal of the physics below this process is also presented. As a result an optimal control of the patterning process has been acquired. The system has been used on different substrates, including indium tin oxide either on glass or on polyethylene terephtalate, as well as alloys like Au/Cr, and Al. The influence of conditions such as tip speed and applied voltage is discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to provide information on the behaviour of steel prestressing wires under likely conditions that could be expected during a fire or impact loads. Four loadings were investigated: a) the influence of strain rate – from 10–3 to 600 s–1 – at room temperature, b) the influence of temperature – from 24 to 600 °C – at low strain rate, c) the influence of the joint effect of strain rate and temperature, and d) damage after three plausible fire scenarios. At room temperature it was found that using “static” values is a safe option. At high temperatures our results are in agreement with design codes. Regarding the joint effect of temperature and strain rate, mechanical properties decrease with increasing temperature, although for a given temperature, yield stress and tensile strength increase with strain rate. The data provided can be used profitably to model the mechanical behaviour of steel wires under different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible deleterious effects of coiling and long-time storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of Standards are fulfilled (minimum coiling diameters) these effects can be neglected. However, some other factors like previous residual stresses, long-time storage or storage at high temperatures, can trigger or emphasise this damage to the material. In the authors’ opinion it is recommendable to control the final curvature of the wires after uncoiling prior to prestressing, as required in some Standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual stresses developed during wire drawing influence the mechanical behavior and durability of steel wires used for prestressed concrete structures, particularly the shape of the stress–strain curve, stress relaxation losses, fatigue life, and environmental cracking susceptibility. The availability of general purpose finite element analysis tools and powerful diffraction techniques (X-rays and neutrons) has made it possible to predict and measure accurately residual stress fields in cold-drawn steel wires. Work carried out in this field in the past decade, shows the prospects and limitations of residual stress measurement, how the stress relaxation losses and environmentally-assisted cracking are correlated with the profile of residual stresses and how the performance of steel wires can be improved by modifying such a stress profile

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prestressed structures are susceptible to relaxation losses which are of significant importance in structural design. After being manufactured, prestressing wires are coiled to make their storage and transportation easier. The possible deleterious effects of this operation on the stress relaxation behavior of prestressing steel wires are usually neglected, though it has been noticed by manufacturers and contractors that when relaxation tests are carried out after a long-time storage, on occasions relaxation losses are higher than those measured a short time after manufacturing. The influence of coiling on the relaxation losses is checked by means of experimental work and confirmed with a simple analytical model. The results show that some factors like initial residual stresses, excessively long-time storage or storage at high temperatures,can trigger or accentuate this damage. However, it is also shown that if the requirements of standards are fulfilled (minimum coiling diameters) these effects can be neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conductive submicronic coatings of carbon black (CB)/silica composites have been prepared by a sol-gel process and deposited by spray-coating on glazed porcelain tiles. Stable CB dispersions with surfactant were rheologically characterized to determine the optimum CB-surfactant ratio. The composites were analyzed by Differential Thermal and Thermogravimetric Analysis and Hg-Porosimetry. Thin coatings were thermally treated in the temperature range of 300-500degC in air atmosphere. The microstructure of the coatings was determined by scanning electron microscopy and the structure evaluated by confocal Raman spectroscopy. The electrical characterization of the samples was carried out using dc intensity-voltage curves. The coatings exhibit good adhesion, high density and homogeneous distribution of the conductive filler (CB) in the insulate matrix (silica) that protects against the thermal degradation of the CB nanoparticles during the sintering process. As consequence, the composite coatings show the lowest resistivity values for CB-based films reported in the literature, with values of ~7times10 -5Omegam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was recently suggested that the magnetic field created by the current of a bare tether strongly reduces its own electron-collection capability when a magnetic separatrix disconnecting ambient magnetized plasma from tether extends beyond its electric sheath. It is here shown that current reduction by the self-field depends on the ratio meterizing bias and current profiles along the tether (Lt tether length, characteristic length gauging ohmic effects) and on a new dimensionless number Ks involving ambient and tether parameters. Current reduction is weaker the lower Ks and L*/ Lt, which depend critically on the type of cross section: Ks varies as R5/3, h2/3R, and h2/3 1/4 width for wires, round tethers conductive only in a thin layer, and thin tapes, respectively; L* varies as R2/3 for wires and as h2/3 for tapes and round tethers conductive in a layer (R radius, h thickness). Self-field effects are fully negligible for the last two types of cross sections whatever the mode of operation. In practical efficient tether systems having L*/Lt low, maximum current reduction in case of wires is again negligible for power generation; for deorbiting, reduction is <1% for a 10 km tether and 15% for a 20 km tether. In the reboost mode there are no effects for Ks below some threshold; moderate effects may occur in practical but heavy reboost-wire systems that need no dedicated solar power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitation of Fast Magnetosonic (FMS)waves by a cylindrical array of parallel tethers carrying timemodulated current is discussed. The tethers would fly vertical in the equatorial plane, which is perpendicular to the geomagnetic field when its tilt is ignored, and would be stabilized by the gravity gradient. The tether array would radiate a single FMS wave. In the time-dependent background made of geomagnetic field plus radiated wave, plasma FMS perturbations are excited in the array vicinity through a parametric instability. The growth rate is estimated by truncating the evolution equation for FMS perturbations to the two azimuthal modes of lowest order. Design parameters such as tether length and number, required power and mass are discussed for Low Earth Orbit conditions. The array-attached wave structure would have the radiated wave controlled by the intensity and modulation frequency of the currents, making an active experiment on non-linear low frequency waves possible in real space plasma conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bare tether with thin-tape cross section is both i) the most effective electrodinamic tether for given length and mass, and ii) capable of effective design for an arbitrary mission through its three disparate dimensions. It handily beats the fully insulated tether that exchanges current at both ends, a result resting in advantages of 2D current collection as against 3D collection; it has much greater perimeter than the round bare tether and much lower fatal debris-impact rate, leading to greatly faster de-orbiting and greatly higher probability of survival; and it only allows multi-line tethers reaching a few hundred lines to stand competitive. In selecting the disparate values of length L, width w, and thickness h for a de-orbit mission, performance involves three criteria: a) tether-tospacecraft mass ratio must be small; b) probability of survival against the debris environment must be high; and c) de-orbiting must be fast to reduce manoeuvres for avoiding catastrophic collisions with big active/passive satellites around. Beyond determining tether mass through the product Lwh, main dimension parameters affecting performance are L/h2li characterizing ohmic effects, and w determining electron collection. An algorithm for optimal selection of tape dimensions is elaborated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunnel junctions are key for developing multijunction solar cells (MJSC) for ultra-high concentration applications. We have developed a highly conductive, high bandgap p  + + -AlGaAs/n  + + -GaInP tunnel junction with a peak tunneling current density for as-grown and thermal annealed devices of 996 A/cm 2 and 235 A/cm 2, respectively. The J–V characteristics of the tunnel junction after thermal annealing, together with its behavior at MJSCs typical operation temperatures, indicate that this tunnel junction is a suitable candidate for ultra-high concentrator MJSC designs. The benefits of the optical transparency are also assessed for a lattice-matched GaInP/GaInAs/Ge triple junction solar cell, yielding a current density increase in the middle cell of 0.506 mA/cm 2 with respect to previous designs.