24 resultados para Bonded joints
Resumo:
Las uniones estructurales mecánicas y adhesivas requieren la combinación de un número importante de parámetros para la obtención de la continuidad estructural que exigen las condiciones de diseño. Las características de las uniones presentan importantes variaciones, ligadas a las condiciones de ejecución, tanto en uniones mecánicas como especialmente en uniones adhesivas y mixtas (unión mecánica y adhesiva, también conocidas como uniones híbridas). Las propiedades mecánicas de las uniones adhesivas dependen de la naturaleza y propiedades de los adhesivos y también de muchos otros parámetros que influyen directamente en el comportamiento de estas uniones. Algunos de los parámetros más significativos son: el acabado superficial de los materiales, área y espesor de la capa adhesiva, diseño adecuado, secuencia de aplicación, propiedades químicas de la superficie y preparación de los sustratos antes de aplicar el adhesivo. Los mecanismos de adhesión son complejos. En general, cada unión adhesiva solo puede explicarse considerando la actuación conjunta de varios mecanismos de adhesión. No existen adhesivos universales para un determinado material o aplicación, por lo que cada pareja sustrato-adhesivo requiere un particular estudio y el comportamiento obtenido puede variar, significativamente, de uno a otro caso. El fallo de una junta adhesiva depende del mecanismo cohesión-adhesión, ligado a la secuencia y modo de ejecución de los parámetros operacionales utilizados en la unión. En aplicaciones estructurales existen un número muy elevado de sistemas de unión y de posibles sustratos. En este trabajo se han seleccionado cuatro adhesivos diferentes (cianoacrilato, epoxi, poliuretano y silano modificado) y dos procesos de unión mecánica (remachado y clinchado). Estas uniones se han aplicado sobre chapas de acero al carbono en diferentes estados superficiales (chapa blanca, galvanizada y prepintada). Los parámetros operacionales analizados han sido: preparación superficial, espesor del adhesivo, secuencia de aplicación y aplicación de presión durante el curado. Se han analizado tanto las uniones individuales como las uniones híbridas (unión adhesiva y unión mecánica). La combinación de procesos de unión, sustratos y parámetros operacionales ha dado lugar a la preparación y ensayo de más de mil muestras. Pues, debido a la dispersión de resultados característica de las uniones adhesivas, para cada condición analizada se han ensayado seis probetas. Los resultados obtenidos han sido: El espesor de adhesivo utilizado es una variable muy importante en los adhesivos flexibles, donde cuanto menor es el espesor del adhesivo mayor es la resistencia mecánica a cortadura de la unión. Sin embargo en los adhesivos rígidos su influencia es mucho menor. La naturaleza de la superficie es fundamental para una buena adherencia del adhesivo al substrato, que repercute en la resistencia mecánica de la unión. La superficie que mejor adherencia presenta es la prepintada, especialmente cuando existe una alta compatibilidad entre la pintura y el adhesivo. La superficie que peor adherencia tiene es la galvanizada. La secuencia de aplicación ha sido un parámetro significativo en las uniones híbridas, donde los mejores resultados se han obtenido cuando se aplicaba primero el adhesivo y la unión mecánica se realizaba antes del curado del adhesivo. La aplicación de presión durante el curado se ha mostrado un parámetro significativo en los adhesivos con poca capacidad para el relleno de la junta. En los otros casos su influencia ha sido poco relevante. El comportamiento de las uniones estructurales mecánicas y adhesivas en cuanto a la resistencia mecánica de la unión puede variar mucho en función del diseño de dicha unión. La resistencia mecánica puede ser tan grande que falle antes el substrato que la unión. Las mejores resistencias se consiguen diseñando las uniones con adhesivo cianoacrilato, eligiendo adecuadamente las condiciones superficiales y operacionales, por ejemplo chapa blanca aplicando una presión durante el curado de la unión. La utilización de uniones mixtas aumenta muy poco o nada la resistencia mecánica, pero a cambio proporciona una baja dispersión de resultados, siendo destacable para la superficie galvanizada, que es la que presenta peor reproducibilidad cuando se realizan uniones sólo con adhesivo. Las uniones mixtas conducen a un aumento de la deformación antes de la rotura. Los adhesivos dan rotura frágil y las uniones mecánicas rotura dúctil. La unión mixta proporciona ductilidad a la unión. Las uniones mixtas también pueden dar rotura frágil, esto sucede cuando la resistencia del adhesivo es tres veces superior a la resistencia de la unión mecánica. Las uniones híbridas mejoran la rigidez de la junta, sobre todo se aprecia un aumento importante en las uniones mixtas realizadas con adhesivos flexibles, pudiendo decirse que para todos los adhesivos la rigidez de la unión híbrida es superior. ABSTRACT The mechanical and adhesive structural joints require the combination of a large number of parameters to obtain the structural continuity required for the design conditions. The characteristics of the junctions have important variations, linked to performance conditions, in mechanical joints as particular in mixed adhesive joints (mechanical and adhesive joints, also known as hybrid joints). The mechanical properties of the adhesive joints depend of the nature and properties of adhesives and also of many other parameters that directly influence in the behavior of these joints. Some of the most significant parameters are: the surface finished of the material, area and thickness of the adhesive layer, suitable design, and application sequence, chemical properties of the surface and preparation of the substrate before applying the adhesive. Adhesion mechanisms are complex. In general, each adhesive joint can only be explained by considering the combined action of several adhesions mechanisms. There aren’t universal adhesives for a given material or application, so that each pair substrate-adhesive requires a particular study and the behavior obtained can vary significantly from one to another case. The failure of an adhesive joint depends on the cohesion-adhesion mechanism, linked to the sequence and manner of execution of the operational parameters used in the joint. In the structural applications, there are a very high number of joining systems and possible substrates. In this work we have selected four different adhesives (cyanoacrylate, epoxy, polyurethane and silano modified) and two mechanical joining processes (riveting and clinching). These joints were applied on carbon steel with different types of surfaces (white sheet, galvanized and pre-painted). The operational parameters analyzed were: surface preparation, thickness of adhesive, application sequence and application of pressure during curing. We have analyzed individual joints both as hybrid joints (adhesive joint and mechanical joint). The combination of joining processes, substrates and operational parameters has resulted in the preparation and testing of over a thousand specimens. Then, due to the spread of results characteristic of adhesive joints, for each condition analyzed we have tested six samples. The results have been: The thickness of adhesive used is an important variable in the flexible adhesives, where the lower the adhesive thickness greater the shear strength of the joint. However in rigid adhesives is lower influence. The nature of the surface is essential for good adherence of the adhesive to the substrate, which affects the shear strength of the joint. The surface has better adherence is preprinted, especially when there is a high compatibility between the paint and the adhesive. The surface which has poor adherence is the galvanized. The sequence of application has been a significant parameter in the hybrid junctions, where the best results are obtained when applying first the adhesive and the mechanical joint is performed before cured of the adhesive. The application of pressure during curing has shown a significant parameter in the adhesives with little capacity for filler the joint. In other cases their influence has been less relevant. The behavior of structural mechanical and adhesive joints in the shear strength of the joint can vary greatly depending on the design of such a joint. The shear strength may be so large that the substrate fails before the joint. The best shear strengths are achieved by designing the junctions with cyanoacrylate adhesive, by selecting appropriately the surface and operating conditions, for example by white sheet applying a pressure during curing of the joint. The use of hybrid joints no increase shear strength, but instead provides a low dispersion of results, being remarkable for the galvanized surface, which is the having worst reproducibility when performed bonded joints. The hybrid joints leading to increased deformation before rupture. The joints witch adhesives give brittle fracture and the mechanics joints give ductile fracture. Hybrid joint provides ductility at the joint. Hybrid joint can also give brittle fracture, this happens when the shear strength of the adhesive is three times the shear strength of the mechanical joint. The hybrid joints improve stiffness of joint, especially seen a significant increase in hybrid joints bonding with flexible adhesives, can be said that for all the adhesives, the hybrid junction stiffness is higher.
Resumo:
(SPA) Se ha estudiado el comportamiento a fatiga de uniones adhesivas estructurales a solape simple. Los elementos estructurales fabricados en acero recubierto (galvanizado o pintado) sujetos a fluctuaciones de tensiones y deformaciones pueden fallar después de un número elevado de ciclos. El adhesivo silano modificado (MS) ha sido utilizado para la evaluación de la resistencia mecánica y a la fatiga de uniones de chapa delgada de acero protegido. El objetivo de este trabajo es analizar la influencia del recubrimiento en el comportamiento a fatiga de las uniones adhesivas con silano modificado. Las mejores propiedades se obtuvieron para el acero galvanizado con fallo cohesivo. Los resultados muestran que la compatibilidad química del adhesivo y la capa galvanizada mejoran la adhesión de la unión y la resistencia frente a cargas estáticas y dinámicas. Se ha obtenido el límite de fatiga para las uniones estudiadas. (ENG) The fatigue behaviour of single overlap of structural bonded joints was evaluated. Structural components made of thin coated steel (galvanised or painted) subjected to fluctuating stresses and strains may failure after a sufficient number of fluctuations. The modified silane adhesive (MS) has been used to evaluate the static and fatigue resistance of thin coated steel sheet joints. The aim of this paper is analyse the influence of coated on the fatigue behaviour of modified silane bonded joints. The best properties were obtained for galvanised steel with cohesive failure. The results show that chemical compatibility of adhesive and galvanized layer improve adhesion of joints and the mechanical resistance against static and dynamic loads. The fatigue limited has been obtained for joints studied.
Resumo:
This paper is devoted to the numerical analysis of bidimensional bonded lap joints. For this purpose, the stress singularities occurring at the intersections of the adherend-adhesive interfaces with the free edges are first investigated and a method for computing both the order and the intensity factor of these singularities is described briefly. After that, a simplified model, in which the adhesive domain is reduced to a line, is derived by using an asymptotic expansion method. Then, assuming that the assembly debonding is produced by a macro-crack propagation in the adhesive, the associated energy release rate is computed. Finally, a homogenization technique is used in order to take into account a preliminary adhesive damage consisting of periodic micro-cracks. Some numerical results are presented.
Resumo:
The paper presents a consistent set of results showing the ability of Laser Shock Processing (LSP) in modifying the overall properties of the Friction Stir Welded (FSW) joints made of AA 2024-T351. Based on laser beam intensities above 109 W/cm2 with pulse energies of several Joules and pulses durations of nanoseconds, LSP is able of inducing a compression residual stress field, improving the wear and fatigue resistance by slowing crack propagation and stress corrosion cracking, but also improving the overall behaviour of the structure. After the FSW and LSP procedures are briefly presented, the results of micro-hardness measurements and of transverse tensile tests, together with the corrosion resistance of the native joints vs. LSP treated are discussed. The ability of LSP to generate compressive residual stresses and to improve the behaviour of the FSW joints is underscored.
Resumo:
The geometrical factors defining an adhesive joint are of great importance as its design greatly conditions the performance of the bonding. One of the most relevant geometrical factors is the thickness of the adhesive as it decisively influences the mechanical properties of the bonding and has a clear economic impact on the manufacturing processes or long runs. The traditional mechanical joints (riveting, welding, etc.) are characterised by a predictable performance, and are very reliable in service conditions. Thus, structural adhesive joints will only be selected in industrial applications demanding mechanical requirements and adverse environmental conditions if the suitable reliability (the same or higher than the mechanical joints) is guaranteed. For this purpose, the objective of this paper is to analyse the influence of the adhesive thickness on the mechanical behaviour of the joint and, by means of a statistical analysis based on Weibull distribution, propose the optimum thickness for the adhesive combining the best mechanical performance and high reliability. This procedure, which is applicable without a great deal of difficulty to other joints and adhesives, provides a general use for a more reliable use of adhesive bondings and, therefore, for a better and wider use in the industrial manufacturing processes.
Resumo:
The end-notched flexure (ENF) test calculates the value of mode II fracture energy in adhesive bonding between the substrates of same nature. Traditional methods of calculating fracture energy in the ENF test are not suitable in cases where the thickness of the adhesive is non-negligible compared with adherent thicknesses. To address this issue, a specific methodology for calculating mode II fracture energy has been proposed in this paper. To illustrate the applicability of the proposed method, the fracture energy was calculated by the ENF test for adhesive bonds between aluminium and a composite material, which considered two different types of adhesive (epoxy and polyurethane) and various surface treatments. The proposed calculation model provides higher values of fracture energy than those obtained from the simplified models that consider the adhesive thickness to be zero, supporting the conclusion that the calculation of mode II fracture energy for adhesives with non-negligible thickness relative to their adherents should be based on mathematical models, such as the method proposed in this paper, that incorporate the influence of this thickness.
Resumo:
The paper addresses the fracture propagation and stress corrosion behaviour of laser hybrid welds achieved between low carbon steel and stainless steel thin sheets. The crack propagation within these overmatched in strength welds was investigated by crack tip opening displacement (CTOD) on CT specimens notched transverse to the weld. A Digital Image Correlation System was used to qualify and estimate the initial crack length obtained by fatigue. The results are associated with the fractographic examinations of various regions of laser hybrid joints. Stress corrosion behaviour of the joint is also discussed.
Resumo:
The present investigation addresses the overall and local mechanical performance of dissimilar joints of low carbon steel (CS) and stainless steel (SS) thin sheets achieved by laser welding in case of heat source displacement from the weld gap centreline towards CS. Microstructure characterization and residua! strain scanning, carried out by neutron diffraction, were used to assess the joints features. It was found that the heat source position influences the base metals dilution and the residua! stress field associated to the welding process; the transverse residual stress is smaller than for the longitudinal component, of magnitudes close to the parent CS yield strength. Furthermore, compressive transverse residual stresses were encountered at the SS-weld interface. The tensile behavior of the joint different zones assessed by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being piastically deformed. The tensile loadings of flat transverse specimens generate the strain localization and failure in CS, far away from the weld.En este trabajo se exponen los resultados de una investigacion sobre el comportamiento mecanico de soldaduras disimiles acero inoxidable-acero al carbono, realizadas para unir chapas delgadas, desplazando la fuente de calor del eje longitudinal de la union soldada por laser sobre el acero al carbono. Se han determinado las caracteristicas microestructurales de la union soldada, las tensiones residuales generadas (mediante difraccion de neutrones) y las curvas tension-deformacion locales y globales, mediante medidas locales de deformacion empleando el sistema VIC-2D "video image correlation". El desplazamiento de la fuente de calor infiuye en la dilution de los metales base y el campo de tensiones residuales asociado al proceso de soldeo; las tensiones residuales medidas en direction longitudinal se aproximan al limite elastico del acero al carbono, mientras que las tensiones residuales transversales son menores, e incluso de compresion. El ensayo a traccion de la union soldada revela que las tensiones residuales y la diferencia de limite elastico entre los metales base y la soldadura propician que la rotura se produzca por inestabilidad plastica del acero al carbono, lejos de la soldadura, sin que la union plastifique.
Resumo:
Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.
Resumo:
The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.
Resumo:
The present investigation addresse the influence of laser welding process-ing parameters used for joining dis-similar metals (ferritic to austenitic steel), on the induced residual stress field. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuous wave (CW), keyhole mode. The base metals (BM) employed in this study are AISI 1010 carbon steel (CS) and AISI 304L austenitic stainless steel (SS). Pairs of dissimilar plates of 200 mm x 45 mm x 3 mm were butt joined by laser welding. Different sets of parameters were used to engineer the base metals apportionment at joint formation, namely distinct dilution rates. Residual strain scanning, carried out by neutron diffraction was used to assess the joints. Through-thickness residual stress maps were determined for the laser welded samples of dis-similar steels using high spatial reso-lution. As a result, an appropriate set of processing parameters, able to mi-nimize the local tensile residual stress associated to the welding process, was found.
Resumo:
The investigation addresses the over-all performance of dissimilar joints of low carbon steel and stainless steel thin sheets achieved by laser hybrid welding. First, the technological de-velopment of dissimilar laser hybrid welding of thin sheets is briefly pre-sented. Joint characterisation by means of macro and microstructural examination and hardness tests is fur-ther described. Microhardness testing was used as an alternative and effi-cient mean of assessing the changes in mechanical properties of difficult to characterize areas, like HAZ and fu-sion zone of these thin sheets Laser-GMA dissimilar welded joints. The overall tensile performance of the joint is discussed together with the weld metal strength overmatching. The ten-sile tests results indicate that in case of transversally loaded joints, the po-sitive difference in yield strength between the weld metal and the base materials (overmatching welds) may reduce the weight of the structure, without diminishing its strength.
Resumo:
In this study, autogenous laser welding was used to join thin plates of low carbon ferritic and austenitic stainless steel. Due to the differences in the thermo-physical properties of base metals, this kind of weld exhibits a complex microstructure, which frequently leads to an overall loss of joint quality. Four welded samples were prepared by using different sets of processing parameters, with the aim of minimizing the induced residual stress field. The dissimilar austenitic-ferritic joints obtained under all welding conditions were uniform and free of defects. Variations in beam position did not influence the weld geometiy, which is a typical keyhole welding. Microstructural characterization and residual strain scanning (by neutron diffraction) were used to assess the features of the joints. By varying laser beam power density and by displacing the laser beam towards the carbon steel side, an optimum combination of processing parameters was found.
Resumo:
The present investigation addresses the mechanical behavior and residual stress field of dissimilar joints produced by laser welding. Microstructure characterization and residual strain scanning, carried out by neutron diffraction, were used to assess the joints features. It was found that the heat source position influences the base metals dilution and the residual stress field associated to the welding process. The tensile behavior of the joint, different zones achieved by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being plastically deformed.
Resumo:
Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.