98 resultados para Automatic segmentation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic segmentation using univariate and multivariate techniques provides more objective and efficient segmentations of the river systems (Alber & Piégay, 2011) and can be complementary to the expert criteria traditionally used (Brenden et al., 2008) INTEREST: A powerful tool to objectively segment the continuity of rivers, which is required for diagnosing problems associated to human impacts OBJECTIVE: To evaluate the potentiality of univariate and multivariate methods in the assessment of river adjustments produced by flow regulation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automatic segmentation and tracking of the coronary artery tree from Cardiac Multislice-CT images is an important goal to improve the diagnosis and treatment of coronary artery disease. This paper presents a semi-automatic algorithm (one input point per vessel) based on morphological grayscale local reconstructions in 3D images devoted to the extraction of the coronary artery tree. The algorithm has been evaluated in the framework of the Coronary Artery Tracking Challenge 2008 [1], obtaining consistent results in overlapping measurements (a mean of 70% of the vessel well tracked). Poor results in accuracy measurements suggest that future work should refine the centerline extraction. The algorithm can be efficiently implemented and its general strategy can be easily extrapolated to a completely automated centerline extraction or to a user interactive vessel extraction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis doctoral está encuadrada dentro del marco general de la ingeniería biomédica aplicada al tratamiento de las enfermedades cardiovasculares, enfermedades que provocan alrededor de 1.9 millones (40%) de muertes al año en la Unión Europea. En este contexto surge el proyecto europeo SCATh-Smart Catheterization, cuyo objetivo principal es mejorar los procedimientos de cateterismo aórtico introduciendo nuevas tecnologías de planificación y navegación quirúrgica y minimizando el uso de fluoroscopía. En particular, esta tesis aborda el modelado y diagnóstico de aneurismas aórticos abdominales (AAA) y del trombo intraluminal (TIL), allí donde esté presente, así como la segmentación de estas estructuras en imágenes preoperatorias de RM. Los modelos físicos específicos del paciente, construidos a partir de imágenes médicas preoperatorias, tienen múltiples usos, que van desde la evaluación preoperatoria de estructuras anatómicas a la planificación quirúrgica para el guiado de catéteres. En el diagnóstico y tratamiento de AAA, los modelos físicos son útiles a la hora de evaluar diversas variables biomecánicas y fisiológicas de las estructuras vasculares. Existen múltiples técnicas que requieren de la generación de modelos físicos que representen la anatomía vascular. Una de las principales aplicaciones de los modelos físicos es el análisis de elementos finitos (FE). Las simulaciones de FE para AAA pueden ser específicas para el paciente y permiten modelar estados de estrés complejos, incluyendo los efectos provocados por el TIL. La aplicación de métodos numéricos de análisis tiene como requisito previo la generación de una malla computacional que representa la geometría de interés mediante un conjunto de elementos poliédricos, siendo los hexaédricos los que presentan mejores resultados. En las estructuras vasculares, generar mallas hexaédricas es un proceso especialmente exigente debido a la compleja anatomía 3D ramificada. La mayoría de los AAA se encuentran situados en la bifurcación de la arteria aorta en las arterias iliacas y es necesario modelar de manera fiel dicha bifurcación. En el caso de que la sangre se estanque en el aneurisma provocando un TIL, éste forma una estructura adyacente a la pared aórtica. De este modo, el contorno externo del TIL es el mismo que el contorno interno de la pared, por lo que las mallas resultantes deben reflejar esta particularidad, lo que se denomina como "mallas conformadas". El fin último de este trabajo es modelar las estructuras vasculares de modo que proporcionen nuevas herramientas para un mejor diagnóstico clínico, facilitando medidas de riesgo de rotura de la arteria, presión sistólica o diastólica, etc. Por tanto, el primer objetivo de esta tesis es diseñar un método novedoso y robusto para generar mallas hexaédricas tanto de la pared aórtica como del trombo. Para la identificación de estas estructuras se utilizan imágenes de resonancia magnética (RM). Deben mantenerse sus propiedades de adyacencia utilizando elementos de alta calidad, prestando especial atención al modelado de la bifurcación y a que sean adecuadas para el análisis de FE. El método tiene en cuenta la evolución de la línea central del vaso en el espacio tridimensional y genera la malla directamente a partir de las imágenes segmentadas, sin necesidad de reconstruir superficies triangulares. Con el fin de reducir la intervención del usuario en el proceso de generación de las mallas, es también objetivo de esta tesis desarrollar un método de segmentación semiautomática de las distintas estructuras de interés. Las principales contribuciones de esta tesis doctoral son: 1. El diseño, implementación y evaluación de un algoritmo de generación de mallas hexaédricas conformadas de la pared y el TIL a partir de los contornos segmentados en imágenes de RM. Se ha llevado a cabo una evaluación de calidad que determine su aplicabilidad a métodos de FE. Los resultados demuestran que el algoritmo desarrollado genera mallas conformadas de alta calidad incluso en la región de la bifurcación, que son adecuadas para su uso en métodos de análisis de FE. 2. El diseño, implementación y evaluación de un método de segmentación automático de las estructuras de interés. La luz arterial se segmenta de manera semiautomática utilizando un software disponible a partir de imágenes de RM con contraste. Los resultados de este proceso sirven de inicialización para la segmentación automática de las caras interna y externa de la pared aórtica utilizando métodos basado en modelos de textura y forma a partir de imágenes de RM sin contraste. Los resultados demuestran que el algoritmo desarrollado proporciona segmentaciones fieles de las distintas estructuras de interés. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como aportación para futuros avances en la generación de modelos físicos de geometrías biológicas. ABSTRACT The frame of this PhD Thesis is the biomedical engineering applied to the treatment of cardiovascular diseases, which cause around 1.9 million deaths per year in the European Union and suppose about 40% of deaths per year. In this context appears the European project SCATh-Smart Catheterization. The main objective of this project is creating a platform which improves the navigation of catheters in aortic catheterization minimizing the use of fluoroscopy. In the framework of this project, the specific field of this PhD Thesis is the diagnosis and modeling of abdominal aortic aneurysm (AAAs) and the intraluminal thrombus (ILT) whenever it is present. Patient-specific physical models built from preoperative imaging are becoming increasingly important in the area of minimally invasive surgery. These models can be employed for different purposes, such as the preoperatory evaluation of anatomic structures or the surgical planning for catheter guidance. In the specific case of AAA diagnosis and treatment, physical models are especially useful for evaluating pressures over vascular structures. There are multiple techniques that require the generation of physical models which represent the target anatomy. Finite element (FE) analysis is one the principal applications for physical models. FE simulations for AAA may be patient-specific and allow modeling biomechanical and physiological variables including those produced by ILT, and also the segmentation of those anatomical structures in preoperative MR images. Applying numeric methods requires the generation of a proper computational mesh. These meshes represent the patient anatomy using a set of polyhedral elements, with hexahedral elements providing better results. In the specific case of vascular structures, generating hexahedral meshes is a challenging task due to the complex 3D branching anatomy. Each patient’s aneurysm is unique, characterized by its location and shape, and must be accurately represented for subsequent analyses to be meaningful. Most AAAs are located in the region where the aorta bifurcates into the iliac arteries and it is necessary to model this bifurcation precisely and reliably. If blood stagnates in the aneurysm and forms an ILT, it exists as a conforming structure with the aortic wall, i.e. the ILT’s outer contour is the same as the wall’s inner contour. Therefore, resulting meshes must also be conforming. The main objective of this PhD Thesis is designing a novel and robust method for generating conforming hexahedral meshes for the aortic wall and the thrombus. These meshes are built using largely high-quality elements, especially at the bifurcation, that are suitable for FE analysis of tissue stresses. The method accounts for the evolution of the vessel’s centerline which may develop outside a single plane, and generates the mesh directly from segmented images without the requirement to reconstruct triangular surfaces. In order to reduce the user intervention in the mesh generation process is also a goal of this PhD. Thesis to develop a semiautomatic segmentation method for the structures of interest. The segmentation is performed from magnetic resonance image (MRI) sequences that have tuned to provide high contrast for the arterial tissue against the surrounding soft tissue, so that we determine the required information reliably. The main contributions of this PhD Thesis are: 1. The design, implementation and evaluation of an algorithm for generating hexahedral conforming meshes of the arterial wall and the ILT from the segmented contours. A quality inspection has been applied to the meshes in order to determine their suitability for FE methods. Results show that the developed algorithm generates high quality conforming hexahedral meshes even at the bifurcation region. Thus, these meshes are suitable for FE analysis. 2. The design, implementation and evaluation of a semiautomatic segmentation method for the structures of interest. The lumen is segmented in a semiautomatic way from contrast filled MRI using an available software. The results obtained from this process are used to initialize the automatic segmentation of the internal and external faces of the aortic wall. These segmentations are performed by methods based on texture and shape models from MRI with no contrast. The results show that the algorithm provides faithful segmentations of the structures of interest requiring minimal user intervention. In conclusion, the work undertaken in this PhD. Thesis verifies the investigation hypotheses. It intends to serve as basis for future physical model generation of proper biological anatomies used by numerical methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La segmentación de imágenes puede plantearse como un problema de minimización de una energía discreta. Nos enfrentamos así a una doble cuestión: definir una energía cuyo mínimo proporcione la segmentación buscada y, una vez definida la energía, encontrar un mínimo absoluto de la misma. La primera parte de esta tesis aborda el segundo problema, y la segunda parte, en un contexto más aplicado, el primero. Las técnicas de minimización basadas en cortes de grafos permiten obtener el mínimo de una energía discreta en tiempo polinomial mediante algoritmos de tipo min-cut/max-flow. Sin embargo, estas técnicas solo pueden aplicarse a energías que son representabas por grafos. Un importante reto es estudiar qué energías son representabas así como encontrar un grafo que las represente, lo que equivale a encontrar una función gadget con variables adicionales. En la primera parte de este trabajo se estudian propiedades de las funciones gadgets que permiten acotar superiormente el número de variables adicionales. Además se caracterizan las energías con cuatro variables que son representabas, definiendo gadgets con dos variables adicionales. En la segunda parte, más práctica, se aborda el problema de segmentación de imágenes médicas, base en muchas ocasiones para la diagnosis y el seguimiento de terapias. La segmentación multi-atlas es una potente técnica de segmentación automática de imágenes médicas, con tres aspectos importantes a destacar: el tipo de registro entre los atlas y la imagen objetivo, la selección de atlas y el método de fusión de etiquetas. Este último punto puede formularse como un problema de minimización de una energía. A este respecto introducimos dos nuevas energías representables. La primera, de orden dos, se utiliza en la segmentación en hígado y fondo de imágenes abdominales obtenidas mediante tomografía axial computarizada. La segunda, de orden superior, se utiliza en la segmentación en hipocampos y fondo de imágenes cerebrales obtenidas mediante resonancia magnética. ABSTRACT The image segmentation can be described as the problem of minimizing a discrete energy. We face two problems: first, to define an energy whose minimum provides the desired segmentation and, second, once the energy is defined we must find its global minimum. The first part of this thesis addresses the second problem, and the second part, in a more applied context, the first problem. Minimization techniques based on graph cuts find the minimum of a discrete energy in polynomial time via min-cut/max-flow algorithms. Nevertheless, these techniques can only be applied to graph-representable energies. An important challenge is to study which energies are graph-representable and to construct graphs which represent these energies. This is the same as finding a gadget function with additional variables. In the first part there are studied the properties of gadget functions which allow the number of additional variables to be bounded from above. Moreover, the graph-representable energies with four variables are characterised and gadgets with two additional variables are defined for these. The second part addresses the application of these ideas to medical image segmentation. This is often the first step in computer-assisted diagnosis and monitoring therapy. Multiatlas segmentation is a powerful automatic segmentation technique for medical images, with three important aspects that are highlighted here: the registration between the atlas and the target image, the atlas selection, and the label fusion method. We formulate the label fusion method as a minimization problem and we introduce two new graph-representable energies. The first is a second order energy and it is used for the segmentation of the liver in computed tomography (CT) images. The second energy is a higher order energy and it is used for the segmentation of the hippocampus in magnetic resonance images (MRI).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este proyecto presenta un software para el análisis de imágenes dermatoscópicas correspondiente a lesiones melanocíticas, con el fin de clasificarlas entre lesiones benignas y melanoma. El sistema realiza una segmentación automática de la lesión y la procesa en varas etapas, extrayendo características de relevancia diagnóstica: asimetría, colores, irregularidad del borde, y la presencia de estructuras como redes pigmentadas atípicas o velo azul-blanquecino. Proporciona además una herramienta para el etiquetado manual de estructuras adicionales. La clasificación automática de las lesiones se realiza en base a los métodos de diagnóstico más comúnmente utilizados: las reglas ABCD, Menzies, 7-point checklist, CASH y CHAOS & CLUES. El sistema de clasificación se evalúa sobre una base de datos de imágenes dermatoscópicas, y se realiza una comparativa de los resultados obtenidos por cada método de diagnóstico. ABSTRACT. This project presents a software for the analysis of dermoscopic images of melanocytic lesions, and their classification into benign lesions and melanoma. The system performs automatic segmentation of the lesion and goes through several stages of extraction of certain characteristics relevant to the diagnosis, such as asymmetry, border irregularity, or presence of structures like atypical pigmented network or blue-whitish veil. Automatic classification of the lesions is accomplished by means of the most commonly used diagnostic methods, such as ABCD and Menzies's rules, the 7-point checklist, CASH, and CHAOS & CLUES. The classification system is evaluated by using a dermoscopic image database, and a comparison of the results yielded by the different diagnostic methods is performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis se ha desarrollado en el contexto del proyecto Cajal Blue Brain, una iniciativa europea dedicada al estudio del cerebro. Uno de los objetivos de esta iniciativa es desarrollar nuevos métodos y nuevas tecnologías que simplifiquen el análisis de datos en el campo neurocientífico. El presente trabajo se ha centrado en diseñar herramientas que combinen información proveniente de distintos canales sensoriales con el fin de acelerar la interacción y análisis de imágenes neurocientíficas. En concreto se estudiará la posibilidad de combinar información visual con información háptica. Las espinas dendríticas son pequeñas protuberancias que recubren la superficie dendrítica de muchas neuronas del cerebro. A día de hoy, se cree que tienen un papel clave en la transmisión de señales neuronales. Motivo por el cual, el interés por parte de la comunidad científica por estas estructuras ha ido en aumento a medida que las técnicas de adquisición de imágenes mejoraban hasta alcanzar una calidad suficiente para analizar dichas estructuras. A menudo, los neurocientíficos utilizan técnicas de microscopía con luz para obtener los datos que les permitan analizar estructuras neuronales tales como neuronas, dendritas y espinas dendríticas. A pesar de que estas técnicas ofrezcan ciertas ventajas frente a su equivalente electrónico, las técnicas basadas en luz permiten una menor resolución. En particular, estructuras pequeñas como las espinas dendríticas pueden capturarse de forma incorrecta en las imágenes obtenidas, impidiendo su análisis. En este trabajo, se presenta una nueva técnica, que permite editar imágenes volumétricas, mediante un dispositivo háptico, con el fin de reconstruir de los cuellos de las espinas dendríticas. Con este objetivo, en un primer momento se desarrolló un algoritmo que proporciona retroalimentación háptica en datos volumétricos, completando la información que provine del canal visual. Dicho algoritmo de renderizado háptico permite a los usuarios tocar y percibir una isosuperficie en el volumen de datos. El algoritmo asegura un renderizado robusto y eficiente. Se utiliza un método basado en las técnicas de “marching tetrahedra” para la extracción local de una isosuperficie continua, lineal y definida por intervalos. La robustez deriva tanto de una etapa de detección de colisiones continua de la isosuperficie extraída, como del uso de técnicas eficientes de renderizado basadas en un proxy puntual. El método de “marching tetrahedra” propuesto garantiza que la topología de la isosuperficie extraída coincida con la topología de una isosuperficie equivalente determinada utilizando una interpolación trilineal. Además, con el objetivo de mejorar la coherencia entre la información háptica y la información visual, el algoritmo de renderizado háptico calcula un segundo proxy en la isosuperficie pintada en la pantalla. En este trabajo se demuestra experimentalmente las mejoras en, primero, la etapa de extracción de isosuperficie, segundo, la robustez a la hora de mantener el proxy en la isosuperficie deseada y finalmente la eficiencia del algoritmo. En segundo lugar, a partir del algoritmo de renderizado háptico propuesto, se desarrolló un procedimiento, en cuatro etapas, para la reconstrucción de espinas dendríticas. Este procedimiento, se puede integrar en los cauces de segmentación automática y semiautomática existentes como una etapa de pre-proceso previa. El procedimiento está diseñando para que tanto la navegación como el proceso de edición en sí mismo estén controlados utilizando un dispositivo háptico. Se han diseñado dos experimentos para evaluar esta técnica. El primero evalúa la aportación de la retroalimentación háptica y el segundo se centra en evaluar la idoneidad del uso de un háptico como dispositivo de entrada. En ambos casos, los resultados demuestran que nuestro procedimiento mejora la precisión de la reconstrucción. En este trabajo se describen también dos casos de uso de nuestro procedimiento en el ámbito de la neurociencia: el primero aplicado a neuronas situadas en la corteza cerebral humana y el segundo aplicado a espinas dendríticas situadas a lo largo de neuronas piramidales de la corteza del cerebro de una rata. Por último, presentamos el programa, Neuro Haptic Editor, desarrollado a lo largo de esta tesis junto con los diferentes algoritmos ya mencionados. ABSTRACT This thesis took place within the Cajal Blue Brain project, a European initiative dedicated to the study of the brain. One of the main goals of this project is the development of new methods and technologies simplifying data analysis in neuroscience. This thesis focused on the development of tools combining information originating from distinct sensory channels with the aim of accelerating both the interaction with neuroscience images and their analysis. In concrete terms, the objective is to study the possibility of combining visual information with haptic information. Dendritic spines are thin protrusions that cover the dendritic surface of numerous neurons in the brain and whose function seems to play a key role in neural circuits. The interest of the neuroscience community toward those structures kept increasing as and when acquisition methods improved, eventually to the point that the produced datasets enabled their analysis. Quite often, neuroscientists use light microscopy techniques to produce the dataset that will allow them to analyse neuronal structures such as neurons, dendrites and dendritic spines. While offering some advantages compared to their electronic counterpart, light microscopy techniques achieve lower resolutions. Particularly, small structures such as dendritic spines might suffer from a very low level of fluorescence in the final dataset, preventing further analysis. This thesis introduces a new technique enabling the edition of volumetric datasets in order to recreate dendritic spine necks using a haptic device. In order to fulfil this objective, we first presented an algorithm to provide haptic feedback directly from volumetric datasets, as an aid to regular visualization. The haptic rendering algorithm lets users perceive isosurfaces in volumetric datasets, and it relies on several design features that ensure a robust and efficient rendering. A marching tetrahedra approach enables the dynamic extraction of a piecewise linear continuous isosurface. Robustness is derived using a Continuous Collision Detection step coupled with acknowledged proxy-based rendering methods over the extracted isosurface. The introduced marching tetrahedra approach guarantees that the extracted isosurface will match the topology of an equivalent isosurface computed using trilinear interpolation. The proposed haptic rendering algorithm improves the coherence between haptic and visual cues computing a second proxy on the isosurface displayed on screen. Three experiments demonstrate the improvements on the isosurface extraction stage as well as the robustness and the efficiency of the complete algorithm. We then introduce our four-steps procedure for the complete reconstruction of dendritic spines. Based on our haptic rendering algorithm, this procedure is intended to work as an image processing stage before the automatic segmentation step giving the final representation of the dendritic spines. The procedure is designed to allow both the navigation and the volume image editing to be carried out using a haptic device. We evaluated our procedure through two experiments. The first experiment concerns the benefits of the force feedback and the second checks the suitability of the use of a haptic device as input. In both cases, the results shows that the procedure improves the editing accuracy. We also report two concrete cases where our procedure was employed in the neuroscience field, the first one concerning dendritic spines in the human cortex, the second one referring to an ongoing experiment studying dendritic spines along dendrites of mouse cortical pyramidal neurons. Finally, we present the software program, Neuro Haptic Editor, that was built along the development of the different algorithms implemented during this thesis, and used by neuroscientists to use our procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic spines are thin protrusions that cover the dendritic surface of numerous neurons in the brain and whose function seems to play a key role in neural circuits. The correct segmentation of those structures is difficult due to their small size and the resulting spines can appear incomplete. This paper presents a four-step procedure for the complete reconstruction of dendritic spines. The haptically driven procedure is intended to work as an image processing stage before the automatic segmentation step giving the final representation of the dendritic spines. The procedure is designed to allow both the navigation and the volume image editing to be carried out using a haptic device. A use case employing our procedure together with a commercial software package for the segmentation stage is illustrated. Finally, the haptic editing is evaluated in two experiments; the first experiment concerns the benefits of the force feedback and the second checks the suitability of the use of a haptic device as input. In both cases, the results shows that the procedure improves the editing accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-invasive quantitative assessment of the right ventricular anatomical and functional parameters is a challenging task. We present a semi-automatic approach for right ventricle (RV) segmentation from 4D MR images in two variants, which differ in the amount of user interaction. The method consists of three main phases: First, foreground and background markers are generated from the user input. Next, an over-segmented region image is obtained applying a watershed transform. Finally, these regions are merged using 4D graph-cuts with an intensity based boundary term. For the first variant the user outlines the inside of the RV wall in a few end-diastole slices, for the second two marker pixels serve as starting point for a statistical atlas application. Results were obtained by blind evaluation on 16 testing 4D MR volumes. They prove our method to be robust against markers location and place it favourably in the ranks of existing approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new method, oriented to crop row detection in images from maize fields with high weed pressure. The vision system is designed to be installed onboard a mobile agricultural vehicle, i.e. submitted to gyros, vibrations and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of three main processes: image segmentation, double thresholding, based on the Otsu’s method, and crop row detection. Image segmentation is based on the application of a vegetation index, the double thresholding achieves the separation between weeds and crops and the crop row detection applies least squares linear regression for line adjustment. Crop and weed separation becomes effective and the crop row detection can be favorably compared against the classical approach based on the Hough transform. Both gain effectiveness and accuracy thanks to the double thresholding that makes the main finding of the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images based on active contour models (snakes). In order to obtain an appropriate image for the use of snakes based techniques, the proposed algorithm combines a pre-processing stage including some traditional techniques (thresholding and median filter) with more sophisticated ones such as anisotropic filtering. The value selected for the thresholding was fixed to the 85% of the maximum peak of the image histogram, and the anisotropic filter permits to distinguish two intensity levels, one corresponding to the background and the other one to the foreground (glottis). The initialization carried out is based on the magnitude obtained using the Gradient Vector Flow field, ensuring an automatic process for the selection of the initial contour. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation. The results obtained suggest that this method provided results comparable with other techniques such as the proposed in (Osma-Ruiz et al., 2008).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, vision-based advanced driver-assistance systems (ADAS) have received a new increased interest to enhance driving safety. In particular, due to its high performance–cost ratio, mono-camera systems are arising as the main focus of this field of work. In this paper we present a novel on-board road modeling and vehicle detection system, which is a part of the result of the European I-WAY project. The system relies on a robust estimation of the perspective of the scene, which adapts to the dynamics of the vehicle and generates a stabilized rectified image of the road plane. This rectified plane is used by a recursive Bayesian classi- fier, which classifies pixels as belonging to different classes corresponding to the elements of interest of the scenario. This stage works as an intermediate layer that isolates subsequent modules since it absorbs the inherent variability of the scene. The system has been tested on-road, in different scenarios, including varied illumination and adverse weather conditions, and the results have been proved to be remarkable even for such complex scenarios.