63 resultados para Asynchronous iterative algorithms
Resumo:
One important task in the design of an antenna is to carry out an analysis to find out the characteristics of the antenna that best fulfills the specifications fixed by the application. After that, a prototype is manufactured and the next stage in design process is to check if the radiation pattern differs from the designed one. Besides the radiation pattern, other radiation parameters like directivity, gain, impedance, beamwidth, efficiency, polarization, etc. must be also evaluated. For this purpose, accurate antenna measurement techniques are needed in order to know exactly the actual electromagnetic behavior of the antenna under test. Due to this fact, most of the measurements are performed in anechoic chambers, which are closed areas, normally shielded, covered by electromagnetic absorbing material, that simulate free space propagation conditions, due to the absorption of the radiation absorbing material. Moreover, these facilities can be employed independently of the weather conditions and allow measurements free from interferences. Despite all the advantages of the anechoic chambers, the results obtained both from far-field measurements and near-field measurements are inevitably affected by errors. Thus, the main objective of this Thesis is to propose algorithms to improve the quality of the results obtained in antenna measurements by using post-processing techniques and without requiring additional measurements. First, a deep revision work of the state of the art has been made in order to give a general vision of the possibilities to characterize or to reduce the effects of errors in antenna measurements. Later, new methods to reduce the unwanted effects of four of the most commons errors in antenna measurements are described and theoretical and numerically validated. The basis of all them is the same, to perform a transformation from the measurement surface to another domain where there is enough information to easily remove the contribution of the errors. The four errors analyzed are noise, reflections, truncation errors and leakage and the tools used to suppress them are mainly source reconstruction techniques, spatial and modal filtering and iterative algorithms to extrapolate functions. Therefore, the main idea of all the methods is to modify the classical near-field-to-far-field transformations by including additional steps with which errors can be greatly suppressed. Moreover, the proposed methods are not computationally complex and, because they are applied in post-processing, additional measurements are not required. The noise is the most widely studied error in this Thesis, proposing a total of three alternatives to filter out an important noise contribution before obtaining the far-field pattern. The first one is based on a modal filtering. The second alternative uses a source reconstruction technique to obtain the extreme near-field where it is possible to apply a spatial filtering. The last one is to back-propagate the measured field to a surface with the same geometry than the measurement surface but closer to the AUT and then to apply also a spatial filtering. All the alternatives are analyzed in the three most common near-field systems, including comprehensive noise statistical analyses in order to deduce the signal-to-noise ratio improvement achieved in each case. The method to suppress reflections in antenna measurements is also based on a source reconstruction technique and the main idea is to reconstruct the field over a surface larger than the antenna aperture in order to be able to identify and later suppress the virtual sources related to the reflective waves. The truncation error presents in the results obtained from planar, cylindrical and partial spherical near-field measurements is the third error analyzed in this Thesis. The method to reduce this error is based on an iterative algorithm to extrapolate the reliable region of the far-field pattern from the knowledge of the field distribution on the AUT plane. The proper termination point of this iterative algorithm as well as other critical aspects of the method are also studied. The last part of this work is dedicated to the detection and suppression of the two most common leakage sources in antenna measurements. A first method tries to estimate the leakage bias constant added by the receiver’s quadrature detector to every near-field data and then suppress its effect on the far-field pattern. The second method can be divided into two parts; the first one to find the position of the faulty component that radiates or receives unwanted radiation, making easier its identification within the measurement environment and its later substitution; and the second part of this method is able to computationally remove the leakage effect without requiring the substitution of the faulty component. Resumen Una tarea importante en el diseño de una antena es llevar a cabo un análisis para averiguar las características de la antena que mejor cumple las especificaciones fijadas por la aplicación. Después de esto, se fabrica un prototipo de la antena y el siguiente paso en el proceso de diseño es comprobar si el patrón de radiación difiere del diseñado. Además del patrón de radiación, otros parámetros de radiación como la directividad, la ganancia, impedancia, ancho de haz, eficiencia, polarización, etc. deben ser también evaluados. Para lograr este propósito, se necesitan técnicas de medida de antenas muy precisas con el fin de saber exactamente el comportamiento electromagnético real de la antena bajo prueba. Debido a esto, la mayoría de las medidas se realizan en cámaras anecoicas, que son áreas cerradas, normalmente revestidas, cubiertas con material absorbente electromagnético. Además, estas instalaciones se pueden emplear independientemente de las condiciones climatológicas y permiten realizar medidas libres de interferencias. A pesar de todas las ventajas de las cámaras anecoicas, los resultados obtenidos tanto en medidas en campo lejano como en medidas en campo próximo están inevitablemente afectados por errores. Así, el principal objetivo de esta Tesis es proponer algoritmos para mejorar la calidad de los resultados obtenidos en medida de antenas mediante el uso de técnicas de post-procesado. Primeramente, se ha realizado un profundo trabajo de revisión del estado del arte con el fin de dar una visión general de las posibilidades para caracterizar o reducir los efectos de errores en medida de antenas. Después, se han descrito y validado tanto teórica como numéricamente nuevos métodos para reducir el efecto indeseado de cuatro de los errores más comunes en medida de antenas. La base de todos ellos es la misma, realizar una transformación de la superficie de medida a otro dominio donde hay suficiente información para eliminar fácilmente la contribución de los errores. Los cuatro errores analizados son ruido, reflexiones, errores de truncamiento y leakage y las herramientas usadas para suprimirlos son principalmente técnicas de reconstrucción de fuentes, filtrado espacial y modal y algoritmos iterativos para extrapolar funciones. Por lo tanto, la principal idea de todos los métodos es modificar las transformaciones clásicas de campo cercano a campo lejano incluyendo pasos adicionales con los que los errores pueden ser enormemente suprimidos. Además, los métodos propuestos no son computacionalmente complejos y dado que se aplican en post-procesado, no se necesitan medidas adicionales. El ruido es el error más ampliamente estudiado en esta Tesis, proponiéndose un total de tres alternativas para filtrar una importante contribución de ruido antes de obtener el patrón de campo lejano. La primera está basada en un filtrado modal. La segunda alternativa usa una técnica de reconstrucción de fuentes para obtener el campo sobre el plano de la antena donde es posible aplicar un filtrado espacial. La última es propagar el campo medido a una superficie con la misma geometría que la superficie de medida pero más próxima a la antena y luego aplicar también un filtrado espacial. Todas las alternativas han sido analizadas en los sistemas de campo próximos más comunes, incluyendo detallados análisis estadísticos del ruido con el fin de deducir la mejora de la relación señal a ruido lograda en cada caso. El método para suprimir reflexiones en medida de antenas está también basado en una técnica de reconstrucción de fuentes y la principal idea es reconstruir el campo sobre una superficie mayor que la apertura de la antena con el fin de ser capaces de identificar y después suprimir fuentes virtuales relacionadas con las ondas reflejadas. El error de truncamiento que aparece en los resultados obtenidos a partir de medidas en un plano, cilindro o en la porción de una esfera es el tercer error analizado en esta Tesis. El método para reducir este error está basado en un algoritmo iterativo para extrapolar la región fiable del patrón de campo lejano a partir de información de la distribución del campo sobre el plano de la antena. Además, se ha estudiado el punto apropiado de terminación de este algoritmo iterativo así como otros aspectos críticos del método. La última parte de este trabajo está dedicado a la detección y supresión de dos de las fuentes de leakage más comunes en medida de antenas. El primer método intenta realizar una estimación de la constante de fuga del leakage añadido por el detector en cuadratura del receptor a todos los datos en campo próximo y después suprimir su efecto en el patrón de campo lejano. El segundo método se puede dividir en dos partes; la primera de ellas para encontrar la posición de elementos defectuosos que radian o reciben radiación indeseada, haciendo más fácil su identificación dentro del entorno de medida y su posterior substitución. La segunda parte del método es capaz de eliminar computacionalmente el efector del leakage sin necesidad de la substitución del elemento defectuoso.
Resumo:
It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.
Resumo:
The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.
Resumo:
We present the data structures and algorithms used in the approach for building domain ontologies from folksonomies and linked data. In this approach we extracts domain terms from folksonomies and enrich them with semantic information from the Linked Open Data cloud. As a result, we obtain a domain ontology that combines the emergent knowledge of social tagging systems with formal knowledge from Ontologies.
Resumo:
This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.
Resumo:
A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatalconductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221–224.] algorithm for calculating stomatalconductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An)
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies.
Resumo:
A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection
Resumo:
This work discusses an iterative procedure of shaping offset dual-reflector antennas based on geometrical optics considering both far-field and near-field measurements of amplitude and phase from the feed horn. The surfaces synthesized will transform a known radiation field of a feed to a desired aperture distribution. This technique is applied for both circular and elliptical apertures and has the advantage to simplify the problem compared with existing techniques based on solving nonlinear differential equations. A MATLAB tool has been developed to implement the shaping algorithms. This procedure is applied for the design of a 1.1 m high-gain antenna for the ESA’s Solar Orbiter spacecraft. This antenna operating at X-band will manage high data rate and high efficiency communications with Earth stations.
Application of the Extended Kalman filter to fuzzy modeling: Algorithms and practical implementation
Resumo:
Modeling phase is fundamental both in the analysis process of a dynamic system and the design of a control system. If this phase is in-line is even more critical and the only information of the system comes from input/output data. Some adaptation algorithms for fuzzy system based on extended Kalman filter are presented in this paper, which allows obtaining accurate models without renounce the computational efficiency that characterizes the Kalman filter, and allows its implementation in-line with the process
Resumo:
Animal tracking has been addressed by different initiatives over the last two decades. Most of them rely on satellite connectivity on every single node and lack of energy-saving strategies. This paper presents several new contributions on the tracking of dynamic heterogeneous asynchronous networks (primary nodes with GPS and secondary nodes with a kinetic generator) motivated by the animal tracking paradigm with random transmissions. A simple approach based on connectivity and coverage intersection is compared with more sophisticated algorithms based on ad-hoc implementations of distributed Kalman-based filters that integrate measurement information using Consensus principles in order to provide enhanced accuracy. Several simulations varying the coverage range, the random behavior of the kinetic generator (modeled as a Poisson Process) and the periodic activation of GPS are included. In addition, this study is enhanced with HW developments and implementations on commercial off-the-shelf equipment which show the feasibility for performing these proposals on real hardware.
Resumo:
In this paper we will see how the efficiency of the MBS simulations can be improved in two different ways, by considering both an explicit and implicit semi-recursive formulation. The explicit method is based on a double velocity transformation that involves the solution of a redundant but compatible system of equations. The high computational cost of this operation has been drastically reduced by taking into account the sparsity pattern of the system. Regarding this, the goal of this method is the introduction of MA48, a high performance mathematical library provided by Harwell Subroutine Library. The second method proposed in this paper has the particularity that, depending on the case, between 70 and 85% of the computation time is devoted to the evaluation of forces derivatives with respect to the relative position and velocity vectors. Keeping in mind that evaluating these derivatives can be decomposed into concurrent tasks, the main goal of this paper lies on a successful and straightforward parallel implementation that have led to a substantial improvement with a speedup of 3.2 by keeping all the cores busy in a quad-core processor and distributing the workload between them, achieving on this way a huge time reduction by doing an ideal CPU usage
Resumo:
A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.
Resumo:
Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.