37 resultados para 1094
Resumo:
The amplification of high-order harmonics (HOH) in a plasma-based amplifier is a multiscale, temporal phenomenon that couples plasma hydrodynamics, atomic processes, and HOH electromagnetic fields. We use a one-dimensional, time-dependent Maxwell-Bloch code to compare the natural amplification regime and another regime where plasma polarization is constantly forced by the HOH. In this regime, a 10-MW (i.e., 100 times higher than current seeded soft x-ray laser power), 1.5-μJ, 140-fs pulse free from the parasitic temporal structures appearing on the natural amplification regime can be obtained.
Resumo:
A new method for measuring the linewidth enhancement factor (α-parameter) of semiconductor lasers is proposed and discussed. The method itself provides an estimation of the measurement error, thus self-validating the entire procedure. The α-parameter is obtained from the temporal profile and the instantaneous frequency (chirp) of the pulses generated by gain switching. The time resolved chirp is measured with a polarization based optical differentiator. The accuracy of the obtained values of the α-parameter is estimated from the comparison between the directly measured pulse spectrum and the spectrum reconstructed from the chirp and the temporal profile of the pulse. The method is applied to a VCSEL and to a DFB laser emitting around 1550 nm at different temperatures, obtaining a measurement error lower than ± 8%.
Resumo:
The Simultaneous Multiple Surface (SMS) method in planar geometry (2D) is applied to imaging designs, generating lenses that compare well with aplanatic designs. When the merit function utilizes image quality over the entire field (not just paraxial), the SMS strategy is superior. In fact, the traditional aplanatic approach is actually a particular case of the SMS strategy
Resumo:
A metal-less RXI collimator has been designed using the Simultaneous multiple surface method (SMS). Unlike conventional RXI collimators, whose back surface and parts of the front surface have to be metalized, this collimator is completely metal-free, made only of plastic (PMMA). The collimator’s back surface is designed as a grooved surface providing two TIR reflections for all rays impinging on it. One advantage of the design is the lower manufacturing cost, since there is no need for the expensive process of metalization. More importantly, unlike conventional RXI collimators, this design performs good colour mixing, as well as being very insensitive to the source non-uniformities. The experimental measurements of the first prototype show good agreement with the simulated design.
Resumo:
We report and correct an error in [Opt. Express 20, 9726–9735 (2012)]. The author list has been modified. All other contents are unchanged.
Resumo:
An LED backlight has been designed using the flow-line design method. This method allows a very efficient control of the light extraction. The light is confined inside the guide by total internal reflection, being extracted only by specially calculated surfaces: the ejectors. Backlight designs presented here have a total optical efficiency of up to 80% (including Fresnel and absorption losses) with an FWHM below 30 degrees. The experimental results of the first prototype are shown.
Resumo:
In this work, a new two-dimensional optics design method is proposed that enables the coupling of three ray sets with two lens surfaces. The method is especially important for optical systems designed for wide field of view and with clearly separated optical surfaces. Fermat’s principle is used to deduce a set of functional differential equations fully describing the entire optical system. The presented general analytic solution makes it possible to calculate the lens profiles. Ray tracing results for calculated 15th order Taylor polynomials describing the lens profiles demonstrate excellent imaging performance and the versatility of this new analytic design method.
Resumo:
Podredumbre del tallo y la raíz del sorgo causada por Fusarium verticillioides en España
Resumo:
The two-dimensional analytic optics design method presented in a previous paper [Opt. Express 20, 5576–5585 (2012)] is extended in this work to the three-dimensional case, enabling the coupling of three ray sets with two free-form lens surfaces. Fermat’s principle is used to deduce additional sets of functional differential equations which make it possible to calculate the lens surfaces. Ray tracing simulations demonstrate the excellent imaging performance of the resulting free-form lenses described by more than 100 coefficients.
Resumo:
The intensities of the X and A valence photoelectron lines of N2 have been found to display Fano line shapes as a function of photon energy around the N 1s→ Rydberg excitations. The vibrational intensity distributions of these photoelectron lines change at the N 1s→3sσ and 3pπ resonances. These effects indicate interference between direct and resonant photoionization channels. Our numerical simulations reproduce quite well the experimental results.
Resumo:
We propose a pulse shaping and shortening technique for pulses generated from gain switched single mode semiconductor lasers, based on a Mach Zehnder interferometer with variable delay. The spectral and temporal characteristics of the pulses obtained with the proposed technique are investigated with numerical simulations. Experiments are performed with a Distributed Feedback laser and a Vertical Cavity Surface Emitting Laser, emitting at 1.5 µm, obtaining pulse duration reduction of 25-30%. The main asset of the proposed technique is that it can be applied to different devices and pulses, taking advantage of the flexibility of the gain switching technique.
Resumo:
Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial pep- tides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.
Resumo:
A new optical design strategy for rotational aspheres using very few parameters is presented. It consists of using the SMS method to design the aspheres embedded in a system with additional simpler surfaces (such as spheres, parabolas or other conics) and optimizing the free-parameters. Although the SMS surfaces are designed using only meridian rays, skew rays have proven to be well controlled within the optimization. In the end, the SMS surfaces are expanded using Forbes series and then a second optimization process is carried out with these SMS surfaces as a starting point. The method has been applied to a telephoto lens design in the SWIR band, achieving ultra-compact designs with an excellent performance.
Resumo:
Light trapping is becoming of increasing importance in crystalline silicon solar cells as thinner wafers are used to reduce costs. In this work, we report on light trapping by rear-side diffraction gratings produced by nano-imprint lithography using interference lithography as the mastering technology. Gratings fabricated on crystalline silicon wafers are shown to provide significant absorption enhancements. Through a combination of optical measurement and simulation, it is shown that the crossed grating provides better absorption enhancement than the linear grating, and that the parasitic reflector absorption is reduced by planarizing the rear reflector, leading to an increase in the useful absorption in the silicon. Finally, electro-optical simulations are performed of solar cells employing the fabricated grating structures to estimate efficiency enhancement potential.
Resumo:
The application of impedance control strategies to modern legged locomotion is analyzed, paying special attention to the concepts behind its implementation which is not straightforward. In order to implement a functional impedance controller for a walking mechanism, the concepts of contact, impact, friction, and impedance have to be merged together. A literature review and a comprehensive analysis are presented compiling all these concepts along with a discussion on position-based versus force-based impedance control approaches, and a theoretical model of a robotic leg in contact with its environment is introduced. A theoretical control scheme for the legs of a general legged robot is also introduced, and some simulations results are presented.