3 resultados para wavelength of sensitizing

em Massachusetts Institute of Technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the results of GaInNAs/GaAs quantum dot structures with GaAsN barrier layers grown by solid source molecular beam epitaxy. Extension of the emission wavelength of GaInNAs quantum dots by ~170nm was observed in samples with GaAsN barriers in place of GaAs. However, optimization of the GaAsN barrier layer thickness is necessary to avoid degradation in luminescence intensity and structural property of the GaInNAs dots. Lasers with GaInNAs quantum dots as active layer were fabricated and room-temperature continuous-wave lasing was observed for the first time. Lasing occurs via the ground state at ~1.2μm, with threshold current density of 2.1kA/cm[superscript 2] and maximum output power of 16mW. These results are significantly better than previously reported values for this quantum-dot system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on a new class of nonionic, photosensitive surfactants consisting of a polar di(ethylene oxide) head group attached to an alkyl spacer of between two and eight methylene groups, coupled through an ether linkage to an azobenzene moiety. Structural changes associated with the interconversion of the azobenzene group between its cis and trans forms as mediated by the wavelength of an irradiating light source cause changes in the surface tension and self-assembly properties. Differences in saturated surface tensions (surface tension at concentrations above the CMC) were as high as 14.4 mN/m under radiation of different wavelengths. The qualitative behavior of the surfactants changed as the spacer length changed, attributed to the different orientations adopted by the different surfactants depending on their isomerization states, as revealed by neutron reflection studies. The self-assembly of these photosensitive surfactants has been investigated by light scattering, small angle neutron scattering, and cryo-TEM under different illuminations. The significant change in the self-assembly in response to different illumination conditions was attributed to the sign change in Gaussian rigidity, which originated from the azobenzene photoisomerization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel process based on the principle of layered photolithography has been proposed and tested for making real three-dimensional micro-structures. An experimental setup was designed and built for doing experiments on this micro-fabrication process. An ultraviolet (UV) excimer laser at the wavelength of 248 nm was used as the light source and a single piece of photo-mask carrying a series of two dimensional (2D) patterns sliced from a three dimensional (3D) micro-part was employed for the photolithography process. The experiments were conducted on the solidification of liquid photopolymer from single layer to multiple layers. The single-layer photolithography experiments showed that certain photopolymers could be applied for the 3D micro-fabrication, and solid layers with sharp shapes could be formed from the liquid polymer identified. By using a unique alignment technique, multiple layers of photolithography was successfully realized for a micro-gear with features at 60 microns. Electroforming was also conducted for converting the photopolymer master to a metal cavity of the micro-gear, which proved that the process is feasible for micro-molding.