19 resultados para visual computation
em Massachusetts Institute of Technology
Resumo:
A vernier offset is detected at once among straight lines, and reaction times are almost independent of the number of simultaneously presented stimuli (distractors), indicating parallel processing of vernier offsets. Reaction times for identifying a vernier offset to one side among verniers offset to the opposite side increase with the number of distractors, indicating serial processing. Even deviations below a photoreceptor diameter can be detected at once. The visual system thus attains positional accuracy below the photoreceptor diameter simultaneously at different positions. I conclude that deviation from straightness, or change of orientation, is detected in parallel over the visual field. Discontinuities or gradients in orientation may represent an elementary feature of vision.
Resumo:
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.
Resumo:
Most computational models of neurons assume that their electrical characteristics are of paramount importance. However, all long-term changes in synaptic efficacy, as well as many short-term effects, are mediated by chemical mechanisms. This technical report explores the interaction between electrical and chemical mechanisms in neural learning and development. Two neural systems that exemplify this interaction are described and modelled. The first is the mechanisms underlying habituation, sensitization, and associative learning in the gill withdrawal reflex circuit in Aplysia, a marine snail. The second is the formation of retinotopic projections in the early visual pathway during embryonic development.
Resumo:
Structure from motion often refers to the computation of 3D structure from a matched sequence of images. However, a depth map of a surface is difficult to compute and may not be a good representation for storage and recognition. Given matched images, I will first show that the sign of the normal curvature in a given direction at a given point in the image can be computed from a simple difference of slopes of line-segments in one image. Using this result, local surface patches can be classified as convex, concave, parabolic (cylindrical), hyperbolic (saddle point) or planar. At the same time the translational component of the optical flow is obtained, from which the focus of expansion can be computed.
Resumo:
In this paper we present an approach to perceptual organization and attention based on Curved Inertia Frames (C.I.F.), a novel definition of "curved axis of inertia'' tolerant to noisy and spurious data. The definition is useful because it can find frames that correspond to large, smooth, convex, symmetric and central parts. It is novel because it is global and can detect curved axes. We discuss briefly the relation to human perception, the recognition of non-rigid objects, shape description, and extensions to finding "features", inside/outside relations, and long- smooth ridges in arbitrary surfaces.
Resumo:
I wish to propose a quite speculative new version of the grandmother cell theory to explain how the brain, or parts of it, may work. In particular, I discuss how the visual system may learn to recognize 3D objects. The model would apply directly to the cortical cells involved in visual face recognition. I will also outline the relation of our theory to existing models of the cerebellum and of motor control. Specific biophysical mechanisms can be readily suggested as part of a basic type of neural circuitry that can learn to approximate multidimensional input-output mappings from sets of examples and that is expected to be replicated in different regions of the brain and across modalities. The main points of the theory are: -the brain uses modules for multivariate function approximation as basic components of several of its information processing subsystems. -these modules are realized as HyperBF networks (Poggio and Girosi, 1990a,b). -HyperBF networks can be implemented in terms of biologically plausible mechanisms and circuitry. The theory predicts a specific type of population coding that represents an extension of schemes such as look-up tables. I will conclude with some speculations about the trade-off between memory and computation and the evolution of intelligence.
Resumo:
In many different spatial discrimination tasks, such as in determining the sign of the offset in a vernier stimulus, the human visual system exhibits hyperacuity-level performance by evaluating spatial relations with the precision of a fraction of a photoreceptor"s diameter. We propose that this impressive performance depends in part on a fast learning process that uses relatively few examples and occurs at an early processing stage in the visual pathway. We show that this hypothesis is plausible by demonstrating that it is possible to synthesize, from a small number of examples of a given task, a simple (HyperBF) network that attains the required performance level. We then verify with psychophysical experiments some of the key predictions of our conjecture. In particular, we show that fast timulus-specific learning indeed takes place in the human visual system and that this learning does not transfer between two slightly different hyperacuity tasks.
Resumo:
A typical robot vision scenario might involve a vehicle moving with an unknown 3D motion (translation and rotation) while taking intensity images of an arbitrary environment. This paper describes the theory and implementation issues of tracking any desired point in the environment. This method is performed completely in software without any need to mechanically move the camera relative to the vehicle. This tracking technique is simple an inexpensive. Furthermore, it does not use either optical flow or feature correspondence. Instead, the spatio-temporal gradients of the input intensity images are used directly. The experimental results presented support the idea of tracking in software. The final result is a sequence of tracked images where the desired point is kept stationary in the images independent of the nature of the relative motion. Finally, the quality of these tracked images are examined using spatio-temporal gradient maps.
Resumo:
Evolutionary algorithms are a common tool in engineering and in the study of natural evolution. Here we take their use in a new direction by showing how they can be made to implement a universal computer. We consider populations of individuals with genes whose values are the variables of interest. By allowing them to interact with one another in a specified environment with limited resources, we demonstrate the ability to construct any arbitrary logic circuit. We explore models based on the limits of small and large populations, and show examples of such a system in action, implementing a simple logic circuit.
Resumo:
Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
Resumo:
This research project is a study of the role of fixation and visual attention in object recognition. In this project, we build an active vision system which can recognize a target object in a cluttered scene efficiently and reliably. Our system integrates visual cues like color and stereo to perform figure/ground separation, yielding candidate regions on which to focus attention. Within each image region, we use stereo to extract features that lie within a narrow disparity range about the fixation position. These selected features are then used as input to an alignment-style recognition system. We show that visual attention and fixation significantly reduce the complexity and the false identifications in model-based recognition using Alignment methods. We also demonstrate that stereo can be used effectively as a figure/ground separator without the need for accurate camera calibration.
Resumo:
This thesis investigates the problem of estimating the three-dimensional structure of a scene from a sequence of images. Structure information is recovered from images continuously using shading, motion or other visual mechanisms. A Kalman filter represents structure in a dense depth map. With each new image, the filter first updates the current depth map by a minimum variance estimate that best fits the new image data and the previous estimate. Then the structure estimate is predicted for the next time step by a transformation that accounts for relative camera motion. Experimental evaluation shows the significant improvement in quality and computation time that can be achieved using this technique.
Resumo:
The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room it is inspecting, such as moving objects. Forward and rotational motion vision are used to find doors and rooms, and these can be used to build topological maps. The map is built without the use of odometry or trajectory integration. The long term goal of the project described here is for the robot to build simple maps of its environment and to localize itself within this framework.
Resumo:
This report shows how knowledge about the visual world can be built into a shape representation in the form of a descriptive vocabulary making explicit the important geometrical relationships comprising objects' shapes. Two computational tools are offered: (1) Shapestokens are placed on a Scale-Space Blackboard, (2) Dimensionality-reduction captures deformation classes in configurations of tokens. Knowledge lies in the token types and deformation classes tailored to the constraints and regularities ofparticular shape worlds. A hierarchical shape vocabulary has been implemented supporting several later visual tasks in the two-dimensional shape domain of the dorsal fins of fishes.
Resumo:
My work is broadly concerned with the question "How can designs bessynthesized computationally?" The project deals primarily with mechanical devices and focuses on pre-parametric design: design at the level of detail of a blackboard sketch rather than at the level of detail of an engineering drawing. I explore the project ideas in the domain of single-input single-output dynamic systems, like pressure gauges, accelerometers, and pneumatic cylinders. The problem solution consists of two steps: 1) generate a schematic description of the device in terms of idealized functional elements, and then 2) from the schematic description generate a physical description.