4 resultados para visibility query
em Massachusetts Institute of Technology
Resumo:
Visibility constraints can aid the segmentation of foreground objects observed with multiple range images. In our approach, points are defined as foreground if they can be determined to occlude some {em empty space} in the scene. We present an efficient algorithm to estimate foreground points in each range view using explicit epipolar search. In cases where the background pattern is stationary, we show how visibility constraints from other views can generate virtual background values at points with no valid depth in the primary view. We demonstrate the performance of both algorithms for detecting people in indoor office environments.
Resumo:
This paper describes a natural language system START. The system analyzes English text and automatically transforms it into an appropriate representation, the knowledge base, which incorporates the information found in the text. The user gains access to information stored in the knowledge base by querying it in English. The system analyzes the query and decides through a matching process what information in the knowledge base is relevant to the question. Then it retrieves this information and formulates its response also in English.
Resumo:
We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.
Resumo:
The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts. In its simplest form, relevance is defined to be the dot product between a document and a query vector--a measure of the number of common terms. A central difficulty in text retrieval is that the presence or absence of a word is not sufficient to determine relevance to a query. Linear dimensionality reduction has been proposed as a technique for extracting underlying structure from the document collection. In some domains (such as vision) dimensionality reduction reduces computational complexity. In text retrieval it is more often used to improve retrieval performance. We propose an alternative and novel technique that produces sparse representations constructed from sets of highly-related words. Documents and queries are represented by their distance to these sets. and relevance is measured by the number of common clusters. This technique significantly improves retrieval performance, is efficient to compute and shares properties with the optimal linear projection operator and the independent components of documents.