5 resultados para vector addition systems

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method for limiting vibration in flexible systems by shaping the system inputs. Unlike most previous attempts at input shaping, this method does not require an extensive system model or lengthy numerical computation; only knowledge of the system natural frequency and damping ratio are required. The effectiveness of this method when there are errors in the system model is explored and quantified. An algorithm is presented which, given an upper bound on acceptable residual vibration amplitude, determines a shaping strategy that is insensitive to errors in the estimated natural frequency. A procedure for shaping inputs to systems with input constraints is outlined. The shaping method is evaluated by dynamic simulations and hardware experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel ridge detector that finds ridges on vector fields. It is designed to automatically find the right scale of a ridge even in the presence of noise, multiple steps and narrow valleys. One of the key features of such ridge detector is that it has a zero response at discontinuities. The ridge detector can be applied to scalar and vector quantities such as color. We also present a parallel perceptual organization scheme based on such ridge detector that works without edges; in addition to perceptual groups, the scheme computes potential focus of attention points at which to direct future processing. The relation to human perception and several theoretical findings supporting the scheme are presented. We also show results of a Connection Machine implementation of the scheme for perceptual organization (without edges) using color.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a new representation for a function as a linear combination of local correlation kernels at optimal sparse locations and discuss its relation to PCA, regularization, sparsity principles and Support Vector Machines. We first review previous results for the approximation of a function from discrete data (Girosi, 1998) in the context of Vapnik"s feature space and dual representation (Vapnik, 1995). We apply them to show 1) that a standard regularization functional with a stabilizer defined in terms of the correlation function induces a regression function in the span of the feature space of classical Principal Components and 2) that there exist a dual representations of the regression function in terms of a regularization network with a kernel equal to a generalized correlation function. We then describe the main observation of the paper: the dual representation in terms of the correlation function can be sparsified using the Support Vector Machines (Vapnik, 1982) technique and this operation is equivalent to sparsify a large dictionary of basis functions adapted to the task, using a variation of Basis Pursuit De-Noising (Chen, Donoho and Saunders, 1995; see also related work by Donahue and Geiger, 1994; Olshausen and Field, 1995; Lewicki and Sejnowski, 1998). In addition to extending the close relations between regularization, Support Vector Machines and sparsity, our work also illuminates and formalizes the LFA concept of Penev and Atick (1996). We discuss the relation between our results, which are about regression, and the different problem of pattern classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When training Support Vector Machines (SVMs) over non-separable data sets, one sets the threshold $b$ using any dual cost coefficient that is strictly between the bounds of $0$ and $C$. We show that there exist SVM training problems with dual optimal solutions with all coefficients at bounds, but that all such problems are degenerate in the sense that the "optimal separating hyperplane" is given by ${f w} = {f 0}$, and the resulting (degenerate) SVM will classify all future points identically (to the class that supplies more training data). We also derive necessary and sufficient conditions on the input data for this to occur. Finally, we show that an SVM training problem can always be made degenerate by the addition of a single data point belonging to a certain unboundedspolyhedron, which we characterize in terms of its extreme points and rays.