2 resultados para tumor suppression

em Massachusetts Institute of Technology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BALB/c nude mice 6 weeks old were inoculated with glioma C6 cell-line and the efficacy of the different amount of Etanidazole-discs and Taxol-microspheres was investigated. Poly (D,L-lactic-co-glycolic acid) (PLGA) was used as the main encapsulating polymer and polyethylene glycol was added to increase the porosity. The 1% drug loading microspheres of each drug were produced by spray drying and the discs were obtained by compressing the Etanidazole-microspheres. Intra-tumoral injection followed by irradiation resulted in high systemic dosage and thus systemic toxicity. Tumors grown for 6 days, 9 days and 16 days were implanted with 0.5 mg or 1.0 mg or 1.5 mg of the drug. A radiation dosage of 2 Gy each time for a number of times was given for animals implanted with Etanidazole and no irradiation was given for animals implanted with Taxol. Increasing the number of doses clearly decreased the rate of tumor growth. The increase in the amount of drug on smaller sized tumors controlled the tumor better and there was agglomeration of the microspheres resulting in deviation of release profile of the drug as compared to the in vitro studies. It was observed that 1.0 mg of Taxol given to a tumor grown for 6 days was able to suppress the tumor for a total period of approximately two months and no tumor resurrection was observed during the second month.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior research has led to the development of input command shapers that can reduce residual vibration in single- or multiple-mode flexible systems. We present a method for the development of multiple-mode shapers which are simpler to implement and produce smaller response delays than previous designs. An MIT / NASA experimental flexible structure, MACE, is employed as a test article for the validation of the new shaping method. We examine the results of tests conducted on simulations of MACE. The new shapers are shown to be effective in suppressing multiple-mode vibration, even in the presence of mild kinematic and dynamic non-linearities.