3 resultados para tracking of explosives

em Massachusetts Institute of Technology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of augmented reality (AR) technology for assembly guidance is a novel approach in the traditional manufacturing domain. In this paper, we propose an AR approach for assembly guidance using a virtual interactive tool that is intuitive and easy to use. The virtual interactive tool, termed the Virtual Interaction Panel (VirIP), involves two tasks: the design of the VirIPs and the real-time tracking of an interaction pen using a Restricted Coulomb Energy (RCE) neural network. The VirIP includes virtual buttons, which have meaningful assembly information that can be activated by an interaction pen during the assembly process. A visual assembly tree structure (VATS) is used for information management and assembly instructions retrieval in this AR environment. VATS is a hierarchical tree structure that can be easily maintained via a visual interface. This paper describes a typical scenario for assembly guidance using VirIP and VATS. The main characteristic of the proposed AR system is the intuitive way in which an assembly operator can easily step through a pre-defined assembly plan/sequence without the need of any sensor schemes or markers attached on the assembly components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A key question regarding primate visual motion perception is whether the motion of 2D patterns is recovered by tracking distinctive localizable features [Lorenceau and Gorea, 1989; Rubin and Hochstein, 1992] or by integrating ambiguous local motion estimates [Adelson and Movshon, 1982; Wilson and Kim, 1992]. For a two-grating plaid pattern, this translates to either tracking the grating intersections or to appropriately combining the motion estimates for each grating. Since both component and feature information are simultaneously available in any plaid pattern made of contrast defined gratings, it is unclear how to determine which of the two schemes is actually used to recover the plaid"s motion. To address this problem, we have designed a plaid pattern made with subjective, rather than contrast defined, gratings. The distinguishing characteristic of such a plaid pattern is that it contains no contrast defined intersections that may be tracked. We find that notwithstanding the absence of such features, observers can accurately recover the pattern velocity. Additionally we show that the hypothesis of tracking "illusory features" to estimate pattern motion does not stand up to experimental test. These results present direct evidence in support of the idea that calls for the integration of component motions over the one that mandates tracking localized features to recover 2D pattern motion. The localized features, we suggest, are used primarily as providers of grouping information - which component motion signals to integrate and which not to.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.