1 resultado para testing-effect
em Massachusetts Institute of Technology
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (1)
- Aston University Research Archive (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (15)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (14)
- DigitalCommons@The Texas Medical Center (8)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (17)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (2)
- Open University Netherlands (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (477)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (157)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (3)
- Scielo España (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (2)
- University of Michigan (7)
- University of Queensland eSpace - Australia (13)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.