6 resultados para task difficulty

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The task in text retrieval is to find the subset of a collection of documents relevant to a user's information request, usually expressed as a set of words. Classically, documents and queries are represented as vectors of word counts. In its simplest form, relevance is defined to be the dot product between a document and a query vector--a measure of the number of common terms. A central difficulty in text retrieval is that the presence or absence of a word is not sufficient to determine relevance to a query. Linear dimensionality reduction has been proposed as a technique for extracting underlying structure from the document collection. In some domains (such as vision) dimensionality reduction reduces computational complexity. In text retrieval it is more often used to improve retrieval performance. We propose an alternative and novel technique that produces sparse representations constructed from sets of highly-related words. Documents and queries are represented by their distance to these sets. and relevance is measured by the number of common clusters. This technique significantly improves retrieval performance, is efficient to compute and shares properties with the optimal linear projection operator and the independent components of documents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a program called SketchIT capable of producing multiple families of designs from a single sketch. The program is given a rough sketch (drawn using line segments for part faces and icons for springs and kinematic joints) and a description of the desired behavior. The sketch is "rough" in the sense that taken literally, it may not work. From this single, perhaps flawed sketch and the behavior description, the program produces an entire family of working designs. The program also produces design variants, each of which is itself a family of designs. SketchIT represents each family of designs with a "behavior ensuring parametric model" (BEP-Model), a parametric model augmented with a set of constraints that ensure the geometry provides the desired behavior. The construction of the BEP-Model from the sketch and behavior description is the primary task and source of difficulty in this undertaking. SketchIT begins by abstracting the sketch to produce a qualitative configuration space (qc-space) which it then uses as its primary representation of behavior. SketchIT modifies this initial qc-space until qualitative simulation verifies that it produces the desired behavior. SketchIT's task is then to find geometries that implement this qc-space. It does this using a library of qc-space fragments. Each fragment is a piece of parametric geometry with a set of constraints that ensure the geometry implements a specific kind of boundary (qcs-curve) in qc-space. SketchIT assembles the fragments to produce the BEP-Model. SketchIT produces design variants by mapping the qc-space to multiple implementations, and by transforming rotating parts to translating parts and vice versa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents a system for generating a stable, feasible, and reachable grasp of a polyhedral object. A set of contact points on the object is found that can result in a stable grasp; a feasible grasp is found in which the robot contacts the object at those contact points; and a path is constructed from the initial configuration of the robot to the stable, feasible final grasp configuration. The algorithm described in the report is designed for the Salisbury hand mounted on a Puma 560 arm, but a similar approach could be used to develop grasping systems for other robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are investigating how to program robots so that they learn from experience. Our goal is to develop principled methods of learning that can improve a robot's performance of a wide range of dynamic tasks. We have developed task-level learning that successfully improves a robot's performance of two complex tasks, ball-throwing and juggling. With task- level learning, a robot practices a task, monitors its own performance, and uses that experience to adjust its task-level commands. This learning method serves to complement other approaches, such as model calibration, for improving robot performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A difficulty in the design of automated text summarization algorithms is in the objective evaluation. Viewing summarization as a tradeoff between length and information content, we introduce a technique based on a hierarchy of classifiers to rank, through model selection, different summarization methods. This summary evaluation technique allows for broader comparison of summarization methods than the traditional techniques of summary evaluation. We present an empirical study of two simple, albeit widely used, summarization methods that shows the different usages of this automated task-based evaluation system and confirms the results obtained with human-based evaluation methods over smaller corpora.