8 resultados para system architecture
em Massachusetts Institute of Technology
Resumo:
The Space Systems, Policy and Architecture Research Consortium (SSPARC) was formed to make substantial progress on problems of national importance. The goals of SSPARC were to: • Provide technologies and methods that will allow the creation of flexible, upgradable space systems, • Create a “clean sheet” approach to space systems architecture determination and design, including the incorporation of risk, uncertainty, and flexibility issues, and • Consider the impact of national space policy on the above. This report covers the last two goals, and demonstrates that the effort was largely successful.
Resumo:
This paper consists of two major parts. First, we present the outline of a simple approach to very-low bandwidth video-conferencing system relying on an example-based hierarchical image compression scheme. In particular, we discuss the use of example images as a model, the number of required examples, faces as a class of semi-rigid objects, a hierarchical model based on decomposition into different time-scales, and the decomposition of face images into patches of interest. In the second part, we present several algorithms for image processing and animation as well as experimental evaluations. Among the original contributions of this paper is an automatic algorithm for pose estimation and normalization. We also review and compare different algorithms for finding the nearest neighbors in a database for a new input as well as a generalized algorithm for blending patches of interest in order to synthesize new images. Finally, we outline the possible integration of several algorithms to illustrate a simple model-based video-conference system.
Resumo:
This report describes a working autonomous mobile robot whose only goal is to collect and return empty soda cans. It operates in an unmodified office environment occupied by moving people. The robot is controlled by a collection of over 40 independent "behaviors'' distributed over a loosely coupled network of 24 processors. Together this ensemble helps the robot locate cans with its laser rangefinder, collect them with its on-board manipulator, and bring them home using a compass and an array of proximity sensors. We discuss the advantages of using such a multi-agent control system and show how to decompose the required tasks into component activities. We also examine the benefits and limitations of spatially local, stateless, and independent computation by the agents.
Resumo:
With the development of high-level languages for new computer architectures comes the need for appropriate debugging tools as well. One method for meeting this need would be to develop, from scratch, a symbolic debugger with the introduction of each new language implementation for any given architecture. This, however, seems to require unnecessary duplication of effort among developers. This paper describes Maygen, a "debugger generation system," designed to efficiently provide the desired language-dependent and architecture-dependent debuggers. A prototype of the Maygen system has been implemented and is able to handle the semantically different languages of C and OPAL.
Resumo:
The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.
Resumo:
If we are to understand how we can build machines capable of broad purpose learning and reasoning, we must first aim to build systems that can represent, acquire, and reason about the kinds of commonsense knowledge that we humans have about the world. This endeavor suggests steps such as identifying the kinds of knowledge people commonly have about the world, constructing suitable knowledge representations, and exploring the mechanisms that people use to make judgments about the everyday world. In this work, I contribute to these goals by proposing an architecture for a system that can learn commonsense knowledge about the properties and behavior of objects in the world. The architecture described here augments previous machine learning systems in four ways: (1) it relies on a seven dimensional notion of context, built from information recently given to the system, to learn and reason about objects' properties; (2) it has multiple methods that it can use to reason about objects, so that when one method fails, it can fall back on others; (3) it illustrates the usefulness of reasoning about objects by thinking about their similarity to other, better known objects, and by inferring properties of objects from the categories that they belong to; and (4) it represents an attempt to build an autonomous learner and reasoner, that sets its own goals for learning about the world and deduces new facts by reflecting on its acquired knowledge. This thesis describes this architecture, as well as a first implementation, that can learn from sentences such as ``A blue bird flew to the tree'' and ``The small bird flew to the cage'' that birds can fly. One of the main contributions of this work lies in suggesting a further set of salient ideas about how we can build broader purpose commonsense artificial learners and reasoners.
Resumo:
This paper describes a general, trainable architecture for object detection that has previously been applied to face and peoplesdetection with a new application to car detection in static images. Our technique is a learning based approach that uses a set of labeled training data from which an implicit model of an object class -- here, cars -- is learned. Instead of pixel representations that may be noisy and therefore not provide a compact representation for learning, our training images are transformed from pixel space to that of Haar wavelets that respond to local, oriented, multiscale intensity differences. These feature vectors are then used to train a support vector machine classifier. The detection of cars in images is an important step in applications such as traffic monitoring, driver assistance systems, and surveillance, among others. We show several examples of car detection on out-of-sample images and show an ROC curve that highlights the performance of our system.
Resumo:
We design and implement a system that recommends musicians to listeners. The basic idea is to keep track of what artists a user listens to, to find other users with similar tastes, and to recommend other artists that these similar listeners enjoy. The system utilizes a client-server architecture, a web-based interface, and an SQL database to store and process information. We describe Audiomomma-0.3, a proof-of-concept implementation of the above ideas.