25 resultados para symbolic bisimulation
em Massachusetts Institute of Technology
Resumo:
The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module of the program that numerically simulates mechanisms and constructs qualitative descriptions of the simulation results. These descriptions are given in terms that are meaningful to the working chemist (e.g., steady states, stable oscillations, and so on); and the descriptions (as well as the data structures used to construct them) are accessible as input to other programs.
Resumo:
SIN and SOLDIER are heuristic programs in LISP which solve symbolic integration problems. SIN (Symbolic INtegrator) solves indefinite integration problems at the difficulty approaching those in the larger integral tables. SIN contains several more methods than are used in the previous symbolic integration program SAINT, and solves most of the problems attempted by SAINT in less than one second. SOLDIER (SOLution of Ordinary Differential Equations Routine) solves first order, first degree ordinary differential equations at the level of a good college sophomore and at an average of about five seconds per problem attempted. The differences in philosophy and operation between SAINT and SIN are described, and suggestions for extending the work presented are made.
Resumo:
A large computer program has been developed to aid applied mathematicians in the solution of problems in non-numerical analysis which involve tedious manipulations of mathematical expressions. The mathematician uses typed commands and a light pen to direct the computer in the application of mathematical transformations; the intermediate results are displayed in standard text-book format so that the system user can decide the next step in the problem solution. Three problems selected from the literature have been solved to illustrate the use of the system. A detailed analysis of the problems of input, transformation, and display of mathematical expressions is also presented.
Resumo:
With the development of high-level languages for new computer architectures comes the need for appropriate debugging tools as well. One method for meeting this need would be to develop, from scratch, a symbolic debugger with the introduction of each new language implementation for any given architecture. This, however, seems to require unnecessary duplication of effort among developers. This paper describes Maygen, a "debugger generation system," designed to efficiently provide the desired language-dependent and architecture-dependent debuggers. A prototype of the Maygen system has been implemented and is able to handle the semantically different languages of C and OPAL.
Resumo:
The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.
Resumo:
Combining numerical techniques with ideas from symbolic computation and with methods incorporating knowledge of science and mathematics leads to a new category of intelligent computational tools for scientists and engineers. These tools autonomously prepare simulation experiments from high-level specifications of physical models. For computationally intensive experiments, they automatically design special-purpose numerical engines optimized to perform the necessary computations. They actively monitor numerical and physical experiments. They interpret experimental data and formulate numerical results in qualitative terms. They enable their human users to control computational experiments in terms of high-level behavioral descriptions.
Resumo:
The Bifurcation Interpreter is a computer program that autonomously explores the steady-state orbits of one-parameter families of periodically- driven oscillators. To report its findings, the Interpreter generates schematic diagrams and English text descriptions similar to those appearing in the science and engineering research literature. Given a system of equations as input, the Interpreter uses symbolic algebra to automatically generate numerical procedures that simulate the system. The Interpreter incorporates knowledge about dynamical systems theory, which it uses to guide the simulations, to interpret the results, and to minimize the effects of numerical error.
Resumo:
We describe the automatic synthesis of a global nonlinear controller for stabilizing a magnetic levitation system. The synthesized control system can stabilize the maglev vehicle with large initial displacements from an equilibrium, and possesses a much larger operating region than the classical linear feedback design for the same system. The controller is automatically synthesized by a suite of computational tools. This work demonstrates that the difficult control synthesis task can be automated, using programs that actively exploit knowledge of nonlinear dynamics and state space and combine powerful numerical and symbolic computations with spatial-reasoning techniques.
Resumo:
Does knowledge of language consist of symbolic rules? How do children learn and use their linguistic knowledge? To elucidate these questions, we present a computational model that acquires phonological knowledge from a corpus of common English nouns and verbs. In our model the phonological knowledge is encapsulated as boolean constraints operating on classical linguistic representations of speech sounds in term of distinctive features. The learning algorithm compiles a corpus of words into increasingly sophisticated constraints. The algorithm is incremental, greedy, and fast. It yields one-shot learning of phonological constraints from a few examples. Our system exhibits behavior similar to that of young children learning phonological knowledge. As a bonus the constraints can be interpreted as classical linguistic rules. The computational model can be implemented by a surprisingly simple hardware mechanism. Our mechanism also sheds light on a fundamental AI question: How are signals related to symbols?
Resumo:
Classical mechanics is deceptively simple. It is surprisingly easy to get the right answer with fallacious reasoning or without real understanding. To address this problem we use computational techniques to communicate a deeper understanding of Classical Mechanics. Computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results.
Resumo:
This report describes a program which automatically characterizes the behavior of any driven, nonlinear, electrical circuit. To do this, the program autonomously selects interesting input parameters, drives the circuit, measures its response, performs a set of numeric computations on the measured data, interprets the results, and decomposes the circuit's parameter space into regions of qualitatively distinct behavior. The output is a two-dimensional portrait summarizing the high-level, qualitative behavior of the circuit for every point in the graph, an accompanying textual explanation describing any interesting patterns observed in the diagram, and a symbolic description of the circuit's behavior which can be passed on to other programs for further analysis.
Resumo:
This work addresses two related questions. The first question is what joint time-frequency energy representations are most appropriate for auditory signals, in particular, for speech signals in sonorant regions. The quadratic transforms of the signal are examined, a large class that includes, for example, the spectrograms and the Wigner distribution. Quasi-stationarity is not assumed, since this would neglect dynamic regions. A set of desired properties is proposed for the representation: (1) shift-invariance, (2) positivity, (3) superposition, (4) locality, and (5) smoothness. Several relations among these properties are proved: shift-invariance and positivity imply the transform is a superposition of spectrograms; positivity and superposition are equivalent conditions when the transform is real; positivity limits the simultaneous time and frequency resolution (locality) possible for the transform, defining an uncertainty relation for joint time-frequency energy representations; and locality and smoothness tradeoff by the 2-D generalization of the classical uncertainty relation. The transform that best meets these criteria is derived, which consists of two-dimensionally smoothed Wigner distributions with (possibly oriented) 2-D guassian kernels. These transforms are then related to time-frequency filtering, a method for estimating the time-varying 'transfer function' of the vocal tract, which is somewhat analogous to ceptstral filtering generalized to the time-varying case. Natural speech examples are provided. The second question addressed is how to obtain a rich, symbolic description of the phonetically relevant features in these time-frequency energy surfaces, the so-called schematic spectrogram. Time-frequency ridges, the 2-D analog of spectral peaks, are one feature that is proposed. If non-oriented kernels are used for the energy representation, then the ridge tops can be identified, with zero-crossings in the inner product of the gradient vector and the direction of greatest downward curvature. If oriented kernels are used, the method can be generalized to give better orientation selectivity (e.g., at intersecting ridges) at the cost of poorer time-frequency locality. Many speech examples are given showing the performance for some traditionally difficult cases: semi-vowels and glides, nasalized vowels, consonant-vowel transitions, female speech, and imperfect transmission channels.
Resumo:
This paper explores automating the qualitative analysis of physical systems. It describes a program, called PLR, that takes parameterized ordinary differential equations as input and produces a qualitative description of the solutions for all initial values. PLR approximates intractable nonlinear systems with piecewise linear ones, analyzes the approximations, and draws conclusions about the original systems. It chooses approximations that are accurate enough to reproduce the essential properties of their nonlinear prototypes, yet simple enough to be analyzed completely and efficiently. It derives additional properties, such as boundedness or periodicity, by theoretical methods. I demonstrate PLR on several common nonlinear systems and on published examples from mechanical engineering.
Resumo:
Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.
Resumo:
A computer may gather a lot of information from its environment in an optical or graphical manner. A scene, as seen for instance from a TV camera or a picture, can be transformed into a symbolic description of points and lines or surfaces. This thesis describes several programs, written in the language CONVERT, for the analysis of such descriptions in order to recognize, differentiate and identify desired objects or classes of objects in the scene. Examples are given in each case. Although the recognition might be in terms of projections of 2-dim and 3-dim objects, we do not deal with stereoscopic information. One of our programs (Polybrick) identifies parallelepipeds in a scene which may contain partially hidden bodies and non-parallelepipedic objects. The program TD works mainly with 2-dimensional figures, although under certain conditions successfully identifies 3-dim objects. Overlapping objects are identified when they are transparent. A third program, DT, works with 3-dim and 2-dim objects, and does not identify objects which are not completely seen. Important restrictions and suppositions are: (a) the input is assumed perfect (noiseless), and in a symbolic format; (b) no perspective deformation is considered. A portion of this thesis is devoted to the study of models (symbolic representations) of the objects we want to identify; different schemes, some of them already in use, are discussed. Focusing our attention on the more general problem of identification of general objects when they substantially overlap, we propose some schemes for their recognition, and also analyze some problems that are met.