3 resultados para structure, analysis, modeling
em Massachusetts Institute of Technology
Resumo:
This report presents a method for viewing complex programs as built up out of simpler ones. The central idea is that typical programs are built up in a small number of stereotyped ways. The method is designed to make it easier for an automatic system to work with programs. It focuses on how the primitive operations performed by a program are combined together in order to produce the actions of the program as a whole. It does not address the issue of how complex data structures are built up from simpler ones, nor the relationships between data structures and the operations performed on them.
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
This paper presents a model and analysis of a synchronous tandem flow line that produces different part types on unreliable machines. The machines operate according to a static priority rule, operating on the highest priority part whenever possible, and operating on lower priority parts only when unable to produce those with higher priorities. We develop a new decomposition method to analyze the behavior of the manufacturing system by decomposing the long production line into small analytically tractable components. As a first step in modeling a production line with more than one part type, we restrict ourselves to the case where there are two part types. Detailed modeling and derivations are presented with a small two-part-type production line that consists of two processing machines and two demand machines. Then, a generalized longer flow line is analyzed. Furthermore, estimates for performance measures, such as average buffer levels and production rates, are presented and compared to extensive discrete event simulation. The quantitative behavior of the two-part type processing line under different demand scenarios is also provided.