1 resultado para stochastic volatility diffusions
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Aston University Research Archive (62)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (28)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (48)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (18)
- CentAUR: Central Archive University of Reading - UK (99)
- Cochin University of Science & Technology (CUSAT), India (14)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (11)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (104)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (7)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (12)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (31)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Instituto Politécnico do Porto, Portugal (6)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (9)
- Publishing Network for Geoscientific & Environmental Data (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório digital da Fundação Getúlio Vargas - FGV (48)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- Scielo Saúde Pública - SP (9)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (14)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (11)
- Universidade do Minho (2)
- Université de Lausanne, Switzerland (26)
- Université de Montréal (1)
- Université de Montréal, Canada (36)
- University of Connecticut - USA (9)
- University of Michigan (15)
- University of Queensland eSpace - Australia (87)
- University of Southampton, United Kingdom (3)
- University of Washington (3)
Resumo:
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.