7 resultados para stereo aerial imagery
em Massachusetts Institute of Technology
Resumo:
We describe a new method for motion estimation and 3D reconstruction from stereo image sequences obtained by a stereo rig moving through a rigid world. We show that given two stereo pairs one can compute the motion of the stereo rig directly from the image derivatives (spatial and temporal). Correspondences are not required. One can then use the images from both pairs combined to compute a dense depth map. The motion estimates between stereo pairs enable us to combine depth maps from all the pairs in the sequence to form an extended scene reconstruction and we show results from a real image sequence. The motion computation is a linear least squares computation using all the pixels in the image. Areas with little or no contrast are implicitly weighted less so one does not have to explicitly apply a confidence measure.
Resumo:
A unique matching is a stated objective of most computational theories of stereo vision. This report describes situations where humans perceive a small number of surfaces carried by non-unique matching of random dot patterns, although a unique solution exists and is observed unambiguously in the perception of isolated features. We find both cases where non-unique matchings compete and suppress each other and cases where they are all perceived as transparent surfaces. The circumstances under which each behavior occurs are discussed and a possible explanation is sketched. It appears that matching reduces many false targets to a few, but may still yield multiple solutions in some cases through a (possibly different) process of surface interpolation.
Resumo:
Stereopsis and motion parallax are two methods for recovering three dimensional shape. Theoretical analyses of each method show that neither alone can recover rigid 3D shapes correctly unless other information, such as perspective, is included. The solutions for recovering rigid structure from motion have a reflection ambiguity; the depth scale of the stereoscopic solution will not be known unless the fixation distance is specified in units of interpupil separation. (Hence the configuration will appear distorted.) However, the correct configuration and the disposition of a rigid 3D shape can be recovered if stereopsis and motion are integrated, for then a unique solution follows from a set of linear equations. The correct interpretation requires only three points and two stereo views.
Resumo:
Methods for fusing two computer vision methods are discussed and several example algorithms are presented to illustrate the variational method of fusing algorithms. The example algorithms seek to determine planet topography given two images taken from two different locations with two different lighting conditions. The algorithms each employ assingle cost function that combines the computer vision methods of shape-from-shading and stereo in different ways. The algorithms are closely coupled and take into account all the constraints of the photo-topography problem. The algorithms are run on four synthetic test image sets of varying difficulty.
Resumo:
The problems under consideration center around the interpretation of binocular stereo disparity. In particular, the goal is to establish a set of mappings from stereo disparity to corresponding three-dimensional scene geometry. An analysis has been developed that shows how disparity information can be interpreted in terms of three-dimensional scene properties, such as surface depth, discontinuities, and orientation. These theoretical developments have been embodied in a set of computer algorithms for the recovery of scene geometry from input stereo disparity. The results of applying these algorithms to several disparity maps are presented. Comparisons are made to the interpretation of stereo disparity by biological systems.
Resumo:
To use a world model, a mobile robot must be able to determine its own position in the world. To support truly autonomous navigation, I present MARVEL, a system that builds and maintains its own models of world locations and uses these models to recognize its world position from stereo vision input. MARVEL is designed to be robust with respect to input errors and to respond to a gradually changing world by updating its world location models. I present results from real-world tests of the system that demonstrate its reliability. MARVEL fits into a world modeling system under development.
Resumo:
In this text, we present two stereo-based head tracking techniques along with a fast 3D model acquisition system. The first tracking technique is a robust implementation of stereo-based head tracking designed for interactive environments with uncontrolled lighting. We integrate fast face detection and drift reduction algorithms with a gradient-based stereo rigid motion tracking technique. Our system can automatically segment and track a user's head under large rotation and illumination variations. Precision and usability of this approach are compared with previous tracking methods for cursor control and target selection in both desktop and interactive room environments. The second tracking technique is designed to improve the robustness of head pose tracking for fast movements. Our iterative hybrid tracker combines constraints from the ICP (Iterative Closest Point) algorithm and normal flow constraint. This new technique is more precise for small movements and noisy depth than ICP alone, and more robust for large movements than the normal flow constraint alone. We present experiments which test the accuracy of our approach on sequences of real and synthetic stereo images. The 3D model acquisition system we present quickly aligns intensity and depth images, and reconstructs a textured 3D mesh. 3D views are registered with shape alignment based on our iterative hybrid tracker. We reconstruct the 3D model using a new Cubic Ray Projection merging algorithm which takes advantage of a novel data structure: the linked voxel space. We present experiments to test the accuracy of our approach on 3D face modelling using real-time stereo images.