4 resultados para star polyhedra

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach towards shape description, based on prototype modification and generalized cylinders, has been developed and applied to the object domains pottery and polyhedra: (1) A program describes and identifies pottery from vase outlines entered as lists of points. The descriptions have been modeled after descriptions by archeologists, with the result that identifications made by the program are remarkably consisten with those of the archeologists. It has been possible to quantify their shape descriptors, which are everyday terms in our language applied to many sorts of objects besides pottery, so that the resulting descriptions seem very natural. (2) New parsing strategies for polyhedra overcome some limitations of previous work. A special feature is that the processes of parsing and identification are carried out simultaneously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods are presented (1) to partition or decompose a visual scene into the bodies forming it; (2) to position these bodies in three-dimensional space, by combining two scenes that make a stereoscopic pair; (3) to find the regions or zones of a visual scene that belong to its background; (4) to carry out the isolation of objects in (1) when the input has inaccuracies. Running computer programs implement the methods, and many examples illustrate their behavior. The input is a two-dimensional line-drawing of the scene, assumed to contain three-dimensional bodies possessing flat faces (polyhedra); some of them may be partially occluded. Suggestions are made for extending the work to curved objects. Some comparisons are made with human visual perception. The main conclusion is that it is possible to separate a picture or scene into the constituent objects exclusively on the basis of monocular geometric properties (on the basis of pure form); in fact, successful methods are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research reported here concerns the principles used to automatically generate three-dimensional representations from line drawings of scenes. The computer programs involved look at scenes which consist of polyhedra and which may contain shadows and various kinds of coincidentally aligned scene features. Each generated description includes information about edge shape (convex, concave, occluding, shadow, etc.), about the type of illumination for each region (illuminated, projected shadow, or oriented away from the light source), and about the spacial orientation of regions. The methods used are based on the labeling schemes of Huffman and Clowes; this research provides a considerable extension to their work and also gives theoretical explanations to the heuristic scene analysis work of Guzman, Winston, and others.