2 resultados para split luciferase complementation assay
em Massachusetts Institute of Technology
Resumo:
The dynamic power requirement of CMOS circuits is rapidly becoming a major concern in the design of personal information systems and large computers. In this work we present a number of new CMOS logic families, Charge Recovery Logic (CRL) as well as the much improved Split-Level Charge Recovery Logic (SCRL), within which the transfer of charge between the nodes occurs quasistatically. Operating quasistatically, these logic families have an energy dissipation that drops linearly with operating frequency, i.e., their power consumption drops quadratically with operating frequency as opposed to the linear drop of conventional CMOS. The circuit techniques in these new families rely on constructing an explicitly reversible pipelined logic gate, where the information necessary to recover the energy used to compute a value is provided by computing its logical inverse. Information necessary to uncompute the inverse is available from the subsequent inverse logic stage. We demonstrate the low energy operation of SCRL by presenting the results from the testing of the first fully quasistatic 8 x 8 multiplier chip (SCRL-1) employing SCRL circuit techniques.
Resumo:
To engineer complex synthetic biological systems will require modular design, assembly, and characterization strategies. The RNA polymerase arrival rate (PAR) is defined to be the rate that RNA polymerases arrive at a specified location on the DNA. Designing and characterizing biological modules in terms of RNA polymerase arrival rates provides for many advantages in the construction and modeling of biological systems. PARMESAN is an in vitro method for measuring polymerase arrival rates using pyrrolo-dC, a fluorescent DNA base that can substitute for cytosine. Pyrrolo-dC shows a detectable fluorescence difference when in single-stranded versus double-stranded DNA. During transcription, RNA polymerase separates the two strands of DNA, leading to a change in the fluorescence of pyrrolo-dC. By incorporating pyrrolo-dC at specific locations in the DNA, fluorescence changes can be taken as a direct measurement of the polymerase arrival rate.