4 resultados para solution structure

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stereopsis and motion parallax are two methods for recovering three dimensional shape. Theoretical analyses of each method show that neither alone can recover rigid 3D shapes correctly unless other information, such as perspective, is included. The solutions for recovering rigid structure from motion have a reflection ambiguity; the depth scale of the stereoscopic solution will not be known unless the fixation distance is specified in units of interpupil separation. (Hence the configuration will appear distorted.) However, the correct configuration and the disposition of a rigid 3D shape can be recovered if stereopsis and motion are integrated, for then a unique solution follows from a set of linear equations. The correct interpretation requires only three points and two stereo views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uniformly distributed ZnO nanorods with diameter 70-100 nm and 1-2μm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip (needle shape) to flat tip (rod shape). These kinds of structure are useful in laser and field emission application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uniformly distributed ZnO nanorods with diameter 80-120 nm and 1-2µm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip with high aspect ratio to flat tip with smaller aspect ratio. These kinds of structure are useful in laser and field emission application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.