9 resultados para software asset creation
em Massachusetts Institute of Technology
Resumo:
Various studies of asset markets have shown that traders are capable of learning and transmitting information through prices in many situations. In this paper we replace human traders with intelligent software agents in a series of simulated markets. Using these simple learning agents, we are able to replicate several features of the experiments with human subjects, regarding (1) dissemination of information from informed to uninformed traders, and (2) aggregation of information spread over different traders.
Resumo:
Program design is an area of programming that can benefit significantly from machine-mediated assistance. A proposed tool, called the Design Apprentice (DA), can assist a programmer in the detailed design of programs. The DA supports software reuse through a library of commonly-used algorithmic fragments, or cliches, that codifies standard programming. The cliche library enables the programmer to describe the design of a program concisely. The DA can detect some kinds of inconsistencies and incompleteness in program descriptions. It automates detailed design by automatically selecting appropriate algorithms and data structures. It supports the evolution of program designs by keeping explicit dependencies between the design decisions made. These capabilities of the DA are underlaid bya model of programming, called programming by successive elaboration, which mimics the way programmers interact. Programming by successive elaboration is characterized by the use of breadth-first exposition of layered program descriptions and the successive modifications of descriptions. A scenario is presented to illustrate the concept of the DA. Technques for automating the detailed design process are described. A framework is given in which designs are incrementally augmented and modified by a succession of design steps. A library of cliches and a suite of design steps needed to support the scenario are presented.
Resumo:
The future of the software industry is today being shaped in the courtroom. Most discussions of intellectual property to date, however, have been frames as debates about how the existing law --- promulgated long before the computer revolution --- should be applied to software. This memo is a transcript of a panel discussion on what forms of legal protection should apply to software to best serve both the industry and society in general. After addressing that question we can consider what laws would bring this about.
Resumo:
The dream of pervasive computing is slowly becoming a reality. A number of projects around the world are constantly contributing ideas and solutions that are bound to change the way we interact with our environments and with one another. An essential component of the future is a software infrastructure that is capable of supporting interactions on scales ranging from a single physical space to intercontinental collaborations. Such infrastructure must help applications adapt to very diverse environments and must protect people's privacy and respect their personal preferences. In this paper we indicate a number of limitations present in the software infrastructures proposed so far (including our previous work). We then describe the framework for building an infrastructure that satisfies the abovementioned criteria. This framework hinges on the concepts of delegation, arbitration and high-level service discovery. Components of our own implementation of such an infrastructure are presented.
Resumo:
This thesis presents SodaBot, a general-purpose software agent user-environment and construction system. Its primary component is the basic software agent --- a computational framework for building agents which is essentially an agent operating system. We also present a new language for programming the basic software agent whose primitives are designed around human-level descriptions of agent activity. Via this programming language, users can easily implement a wide-range of typical software agent applications, e.g. personal on-line assistants and meeting scheduling agents. The SodaBot system has been implemented and tested, and its description comprises the bulk of this thesis.
Resumo:
Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.
Resumo:
Software bugs are violated specifications. Debugging is the process that culminates in repairing a program so that it satisfies its specification. An important part of debugging is localization, whereby the smallest region of the program that manifests the bug is found. The Debugging Assistant (DEBUSSI) localizes bugs by reasoning about logical dependencies. DEBUSSI manipulates the assumptions that underlie a bug manifestation, eventually localizing the bug to one particular assumption. At the same time, DEBUSSI acquires specification information, thereby extending its understanding of the buggy program. The techniques used for debugging fully implemented code are also appropriate for validating partial designs.
Resumo:
This report describes a computer system that creates simple computer animation in response to high-level, vague, and incomplete descriptions of films. It makes its films by collecting and evaluating suggestions from several different bodies of knowledge. The order in which it makes its choices is influenced by the focus of the film. Difficult choices are postponed to be resumed when more of the film has been determined. The system was implemented in an object-oriented language based upon computational entities called "actors". The goal behind the construction of the system is that, whenever faced with a choice, it should sensibly choose between alternatives based upon the description of the film and as much general knowledge as possible. The system is presented as a computational model of creativity and aesthetics.
Resumo:
Artificial Intelligence research involves the creation of extremely complex programs which must possess the capability to introspect, learn, and improve their expertise. Any truly intelligent program must be able to create procedures and to modify them as it gathers information from its experience. [Sussman, 1975] produced such a system for a 'mini-world'; but truly intelligent programs must be considerably more complex. A crucial stepping stone in AI research is the development of a system which can understand complex programs well enough to modify them. There is also a complexity barrier in the world of commercial software which is making the cost of software production and maintenance prohibitive. Here too a system which is capable of understanding complex programs is a necessary step. The Programmer's Apprentice Project [Rich and Shrobe, 76] is attempting to develop an interactive programming tool which will help expert programmers deal with the complexity involved in engineering a large software system. This report describes REASON, the deductive component of the programmer's apprentice. REASON is intended to help expert programmers in the process of evolutionary program design. REASON utilizes the engineering techniques of modelling, decomposition, and analysis by inspection to determine how modules interact to achieve the desired overall behavior of a program. REASON coordinates its various sources of knowledge by using a dependency-directed structure which records the justification for each deduction it makes. Once a program has been analyzed these justifications can be summarized into a teleological structure called a plan which helps the system understand the impact of a proposed program modification.