4 resultados para singular Riemannian foliations
em Massachusetts Institute of Technology
Resumo:
How much information about the shape of an object can be inferred from its image? In particular, can the shape of an object be reconstructed by measuring the light it reflects from points on its surface? These questions were raised by Horn [HO70] who formulated a set of conditions such that the image formation can be described in terms of a first order partial differential equation, the image irradiance equation. In general, an image irradiance equation has infinitely many solutions. Thus constraints necessary to find a unique solution need to be identified. First we study the continuous image irradiance equation. It is demonstrated when and how the knowledge of the position of edges on a surface can be used to reconstruct the surface. Furthermore we show how much about the shape of a surface can be deduced from so called singular points. At these points the surface orientation is uniquely determined by the measured brightness. Then we investigate images in which certain types of silhouettes, which we call b-silhouettes, can be detected. In particular we answer the following question in the affirmative: Is there a set of constraints which assure that if an image irradiance equation has a solution, it is unique? To this end we postulate three constraints upon the image irradiance equation and prove that they are sufficient to uniquely reconstruct the surface from its image. Furthermore it is shown that any two of these constraints are insufficient to assure a unique solution to an image irradiance equation. Examples are given which illustrate the different issues. Finally, an overview of known numerical methods for computing solutions to an image irradiance equation are presented.
Resumo:
Handwriting production is viewed as a constrained modulation of an underlying oscillatory process. Coupled oscillations in horizontal and vertical directions produce letter forms, and when superimposed on a rightward constant velocity horizontal sweep result in spatially separated letters. Modulation of the vertical oscillation is responsible for control of letter height, either through altering the frequency or altering the acceleration amplitude. Modulation of the horizontal oscillation is responsible for control of corner shape through altering phase or amplitude. The vertical velocity zero crossing in the velocity space diagram is important from the standpoint of control. Changing the horizontal velocity value at this zero crossing controls corner shape, and such changes can be effected through modifying the horizontal oscillation amplitude and phase. Changing the slope at this zero crossing controls writing slant; this slope depends on the horizontal and vertical velocity zero amplitudes and on the relative phase difference. Letter height modulation is also best applied at the vertical velocity zero crossing to preserve an even baseline. The corner shape and slant constraints completely determine the amplitude and phase relations between the two oscillations. Under these constraints interletter separation is not an independent parameter. This theory applies generally to a number of acceleration oscillation patterns such as sinusoidal, rectangular and trapezoidal oscillations. The oscillation theory also provides an explanation for how handwriting might degenerate with speed. An implementation of the theory in the context of the spring muscle model is developed. Here sinusoidal oscillations arise from a purely mechanical sources; orthogonal antagonistic spring pairs generate particular cycloids depending on the initial conditions. Modulating between cycloids can be achieved by changing the spring zero settings at the appropriate times. Frequency can be modulated either by shifting between coactivation and alternating activation of the antagonistic springs or by presuming variable spring constant springs. An acceleration and position measuring apparatus was developed for measurements of human handwriting. Measurements of human writing are consistent with the oscillation theory. It is shown that the minimum energy movement for the spring muscle is bang-coast-bang. For certain parameter values a singular arc solution can be shown to be minimizing. Experimental measurements however indicate that handwriting is not a minimum energy movement.
Resumo:
A method will be described for finding the shape of a smooth apaque object form a monocular image, given a knowledge of the surface photometry, the position of the lightsource and certain auxiliary information to resolve ambiguities. This method is complementary to the use of stereoscopy which relies on matching up sharp detail and will fail on smooth objects. Until now the image processing of single views has been restricted to objects which can meaningfully be considered two-dimensional or bounded by plane surfaces. It is possible to derive a first-order non-linear partial differential equation in two unknowns relating the intensity at the image points to the shape of the objects. This equation can be solved by means of an equivalent set of five ordinary differential equations. A curve traced out by solving this set of equations for one set of starting values is called a characteristic strip. Starting one of these strips from each point on some initial curve will produce the whole solution surface. The initial curves can usually be constructed around so-called singular points. A number of applications of this metod will be discussed including one to lunar topography and one to the scanning electron microscope. In both of these cases great simplifications occur in the equations. A note on polyhedra follows and a quantitative theory of facial make-up is touched upon. An implementation of some of these ideas on the PDP-6 computer with its attached image-dissector camera at the Artificial intelligence Laboratory will be described, and also a nose-recognition program.
Resumo:
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.