5 resultados para semi-Markov decision process
em Massachusetts Institute of Technology
Resumo:
This paper describes a new statistical, model-based approach to building a contact state observer. The observer uses measurements of the contact force and position, and prior information about the task encoded in a graph, to determine the current location of the robot in the task configuration space. Each node represents what the measurements will look like in a small region of configuration space by storing a predictive, statistical, measurement model. This approach assumes that the measurements are statistically block independent conditioned on knowledge of the model, which is a fairly good model of the actual process. Arcs in the graph represent possible transitions between models. Beam Viterbi search is used to match measurement history against possible paths through the model graph in order to estimate the most likely path for the robot. The resulting approach provides a new decision process that can be use as an observer for event driven manipulation programming. The decision procedure is significantly more robust than simple threshold decisions because the measurement history is used to make decisions. The approach can be used to enhance the capabilities of autonomous assembly machines and in quality control applications.
Resumo:
This paper presents a novel algorithm for learning in a class of stochastic Markov decision processes (MDPs) with continuous state and action spaces that trades speed for accuracy. A transform of the stochastic MDP into a deterministic one is presented which captures the essence of the original dynamics, in a sense made precise. In this transformed MDP, the calculation of values is greatly simplified. The online algorithm estimates the model of the transformed MDP and simultaneously does policy search against it. Bounds on the error of this approximation are proven, and experimental results in a bicycle riding domain are presented. The algorithm learns near optimal policies in orders of magnitude fewer interactions with the stochastic MDP, using less domain knowledge. All code used in the experiments is available on the project's web site.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
This paper analyzes a proposed release controlmethodology, WIPLOAD Control (WIPLCtrl), using a transfer line case modeled by Markov process modeling methodology. The performance of WIPLCtrl is compared with that of CONWIP under 13 system configurations in terms of throughput, average inventory level, as well as average cycle time. As a supplement to the analytical model, a simulation model of the transfer line is used to observe the performance of the release control methodologies on the standard deviation of cycle time. From the analysis, we identify the system configurations in which the advantages of WIPLCtrl could be observed.
Resumo:
This report studies when and why two Hidden Markov Models (HMMs) may represent the same stochastic process. HMMs are characterized in terms of equivalence classes whose elements represent identical stochastic processes. This characterization yields polynomial time algorithms to detect equivalent HMMs. We also find fast algorithms to reduce HMMs to essentially unique and minimal canonical representations. The reduction to a canonical form leads to the definition of 'Generalized Markov Models' which are essentially HMMs without the positivity constraint on their parameters. We discuss how this generalization can yield more parsimonious representations of stochastic processes at the cost of the probabilistic interpretation of the model parameters.