2 resultados para segmentazione immagini mediche algoritmo Canny algoritmo watershed edge detection
em Massachusetts Institute of Technology
Resumo:
Texture provides one cue for identifying the physical cause of an intensity edge, such as occlusion, shadow, surface orientation or reflectance change. Marr, Julesz, and others have proposed that texture is represented by small lines or blobs, called 'textons' by Julesz [1981a], together with their attributes, such as orientation, elongation, and intensity. Psychophysical studies suggest that texture boundaries are perceived where distributions of attributes over neighborhoods of textons differ significantly. However, these studies, which deal with synthetic images, neglect to consider two important questions: How can these textons be extracted from images of natural scenes? And how, exactly, are texture boundaries then found? This thesis proposes answers to these questions by presenting an algorithm for computing blobs from natural images and a statistic for measuring the difference between two sample distributions of blob attributes. As part of the blob detection algorithm, methods for estimating image noise are presented, which are applicable to edge detection as well.
Resumo:
We investigate the properties of feedforward neural networks trained with Hebbian learning algorithms. A new unsupervised algorithm is proposed which produces statistically uncorrelated outputs. The algorithm causes the weights of the network to converge to the eigenvectors of the input correlation with largest eigenvalues. The algorithm is closely related to the technique of Self-supervised Backpropagation, as well as other algorithms for unsupervised learning. Applications of the algorithm to texture processing, image coding, and stereo depth edge detection are given. We show that the algorithm can lead to the development of filters qualitatively similar to those found in primate visual cortex.