4 resultados para scaling law
em Massachusetts Institute of Technology
Resumo:
The binocular perception of shape and depth relations between objects can change considerably if the viewing direction is changed only by a small angle. We explored this effect psychophysically and found a strong depth reduction effect for large disparity gradients. The effect is found to be strongest for horizontally oriented stimuli, and stronger for line stimuli than for points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian approach which allows integration of information from different types of matching primitives weighted according to their robustness.
Resumo:
We have simulated numerically an automated Maxwell's demon inspired by Smoluchowski's ideas of 1912. Two gas chambers of equal area are connected via an opening that is covered by a trapdoor. The trapdoor can open to the left but not to the right, and is intended to rectify naturally occurring variations in density between the two chambers. Our results confirm that though the trapdoor behaves as a rectifier when large density differences are imposed by external means, it can not extract useful work from the thermal motion of the molecules when left on its own.
Resumo:
In Phys. Rev. Letters (73:2), Mantegna et al. conclude on the basis of Zipf rank frequency data that noncoding DNA sequence regions are more like natural languages than coding regions. We argue on the contrary that an empirical fit to Zipf"s "law" cannot be used as a criterion for similarity to natural languages. Although DNA is a presumably "organized system of signs" in Mandelbrot"s (1961) sense, and observation of statistical featurs of the sort presented in the Mantegna et al. paper does not shed light on the similarity between DNA's "gramar" and natural language grammars, just as the observation of exact Zipf-like behavior cannot distinguish between the underlying processes of tossing an M-sided die or a finite-state branching process.
Resumo:
Trajectory Mapping "TM'' is a new scaling technique designed to recover the parameterizations, axes, and paths used to traverse a feature space. Unlike Multidimensional Scaling (MDS), there is no assumption that the space is homogenous or metric. Although some metric ordering information is obtained with TM, the main output is the feature parameterizations that partition the given domain of object samples into different categories. Following an introductory example, the technique is further illustrated using first a set of colors and then a collection of textures taken from Brodatz (1966).