2 resultados para savings rate
em Massachusetts Institute of Technology
Resumo:
This paper reports on results from five companies in the aerospace and automotive industries to show that over-commitment of technical professionals and under-representation of key skills on technology development and transition teams seriously impairs team performance. The research finds that 40 percent of the projects studied were inadequately staffed, resulting in weaker team communications and alignment. Most importantly, the weak staffing on these teams is found to be associated with a doubling of project failure rate to reach full production. Those weakly staffed teams that did successfully insert technology into production systems were also much more likely than other teams to have development delays and late engineering changes. The conclusion suggests that the expense of project failure, delay and late engineering changes in these companies must greatly out-weigh the savings gained from reduced staffing costs, and that this problem is likely going to be found in other technology-intensive firms intent on seeing project budgets as a cost to be minimized rather than an investment to be maximized.
Resumo:
Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.