7 resultados para range uncertainty
em Massachusetts Institute of Technology
Resumo:
We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.
Resumo:
Affine transformations are often used in recognition systems, to approximate the effects of perspective projection. The underlying mathematics is for exact feature data, with no positional uncertainty. In practice, heuristics are added to handle uncertainty. We provide a precise analysis of affine point matching, obtaining an expression for the range of affine-invariant values consistent with bounded uncertainty. This analysis reveals that the range of affine-invariant values depends on the actual $x$-$y$-positions of the features, i.e. with uncertainty, affine representations are not invariant with respect to the Cartesian coordinate system. We analyze the effect of this on geometric hashing and alignment recognition methods.
Resumo:
Visibility constraints can aid the segmentation of foreground objects observed with multiple range images. In our approach, points are defined as foreground if they can be determined to occlude some {em empty space} in the scene. We present an efficient algorithm to estimate foreground points in each range view using explicit epipolar search. In cases where the background pattern is stationary, we show how visibility constraints from other views can generate virtual background values at points with no valid depth in the primary view. We demonstrate the performance of both algorithms for detecting people in indoor office environments.
Resumo:
We report a 75dB, 2.8mW, 100Hz-10kHz envelope detector in a 1.5mm 2.8V CMOS technology. The envelope detector performs input-dc-insensitive voltage-to-currentconverting rectification followed by novel nanopower current-mode peak detection. The use of a subthreshold wide- linear-range transconductor (WLR OTA) allows greater than 1.7Vpp input voltage swings. We show theoretically that this optimal performance is technology-independent for the given topology and may be improved only by spending more power. A novel circuit topology is used to perform 140nW peak detection with controllable attack and release time constants. The lower limits of envelope detection are determined by the more dominant of two effects: The first effect is caused by the inability of amplified high-frequency signals to exceed the deadzone created by exponential nonlinearities in the rectifier. The second effect is due to an output current caused by thermal noise rectification. We demonstrate good agreement of experimentally measured results with theory. The envelope detector is useful in low power bionic implants for the deaf, hearing aids, and speech-recognition front ends. Extension of the envelope detector to higher- frequency applications is straightforward if power consumption is inc
Resumo:
Dynamic systems which undergo rapid motion can excite natural frequencies that lead to residual vibration at the end of motion. This work presents a method to shape force profiles that reduce excitation energy at the natural frequencies in order to reduce residual vibration for fast moves. Such profiles are developed using a ramped sinusoid function and its harmonics, choosing coefficients to reduce spectral energy at the natural frequencies of the system. To improve robustness with respect to parameter uncertainty, spectral energy is reduced for a range of frequencies surrounding the nominal natural frequency. An additional set of versine profiles are also constructed to permit motion at constant speed for velocity-limited systems. These shaped force profiles are incorporated into a simple closed-loop system with position and velocity feedback. The force input is doubly integrated to generate a shaped position reference for the controller to follow. This control scheme is evaluated on the MIT Cartesian Robot. The shaped inputs generate motions with minimum residual vibration when actuator saturation is avoided. Feedback control compensates for the effect of friction Using only a knowledge of the natural frequencies of the system to shape the force inputs, vibration can also be attenuated in modes which vibrate in directions other than the motion direction. When moving several axes, the use of shaped inputs allows minimum residual vibration even when the natural frequencies are dynamically changing by a limited amount.
Resumo:
Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has received little previous attention. We present a framework for computing motion strategies that are guaranteed to succeed in the presence of all three kinds of uncertainty. The motion strategies comprise sensor-based gross motions, compliant motions, and simple pushing motions.
Resumo:
Robots must successfully plan and execute tasks in the presence of uncertainty. Uncertainty arises from errors in modeling, sensing, and control. Planning in the presence of uncertainty constitutes one facet of the general motion planning problem in robotics. This problem is concerned with the automatic synthesis of motion strategies from high level task specification and geometric models of environments. In order to develop successful motion strategies, it is necessary to understand the effect of uncertainty on the geometry of object interactions. Object interactions, both static and dynamic, may be represented in geometrical terms. This thesis investigates geometrical tools for modeling and overcoming uncertainty. The thesis describes an algorithm for computing backprojections o desired task configurations. Task goals and motion states are specified in terms of a moving object's configuration space. Backprojections specify regions in configuration space from which particular motions are guaranteed to accomplish a desired task. The backprojection algorithm considers surfaces in configuration space that facilitate sliding towards the goal, while avoiding surfaces on which motions may prematurely halt. In executing a motion for a backprojection region, a plan executor must be able to recognize that a desired task has been accomplished. Since sensors are subject to uncertainty, recognition of task success is not always possible. The thesis considers the structure of backprojection regions and of task goals that ensures goal recognizability. The thesis also develops a representation of friction in configuration space, in terms of a friction cone analogous to the real space friction cone. The friction cone provides the backprojection algorithm with a geometrical tool for determining points at which motions may halt.