3 resultados para pure line

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Whole-Arm Manipulator uses every surface to both sense and interact with the environment. To facilitate the analysis and control of a Whole-Arm Manipulator, line geometry is used to describe the location and trajectory of the links. Applications of line kinematics are described and implemented on the MIT Whole-Arm Manipulator (WAM-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a theory of the three-dimensional interpretation of a class of line-drawings called p-images, which are interpreted by the human vision system as parallelepipeds ("boxes"). Despite their simplicity, p-images raise a number of interesting vision questions: *Why are p-images seen as three-dimensional objects? Why not just as flatimages? *What are the dimensions and pose of the perceived objects? *Why are some p-images interpreted as rectangular boxes, while others are seen as skewed, even though there is no obvious distinction between the images? *When p-images are rotated in three dimensions, why are the image-sequences perceived as distorting objects---even though structure-from-motion would predict that rigid objects would be seen? *Why are some three-dimensional parallelepipeds seen as radically different when viewed from different viewpoints? We show that these and related questions can be answered with the help of a single mathematical result and an associated perceptual principle. An interesting special case arises when there are right angles in the p-image. This case represents a singularity in the equations and is mystifying from the vision point of view. It would seem that (at least in this case) the vision system does not follow the ordinary rules of geometry but operates in accordance with other (and as yet unknown) principles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods are presented (1) to partition or decompose a visual scene into the bodies forming it; (2) to position these bodies in three-dimensional space, by combining two scenes that make a stereoscopic pair; (3) to find the regions or zones of a visual scene that belong to its background; (4) to carry out the isolation of objects in (1) when the input has inaccuracies. Running computer programs implement the methods, and many examples illustrate their behavior. The input is a two-dimensional line-drawing of the scene, assumed to contain three-dimensional bodies possessing flat faces (polyhedra); some of them may be partially occluded. Suggestions are made for extending the work to curved objects. Some comparisons are made with human visual perception. The main conclusion is that it is possible to separate a picture or scene into the constituent objects exclusively on the basis of monocular geometric properties (on the basis of pure form); in fact, successful methods are shown.