4 resultados para project cost engineering

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A revolution\0\0\0 in earthmoving, a $100 billion industry, can be achieved with three components: the GPS location system, sensors and computers in bulldozers, and SITE CONTROLLER, a central computer system that maintains design data and directs operations. The first two components are widely available; I built SITE CONTROLLER to complete the triangle and describe it here. SITE CONTROLLER assists civil engineers in the design, estimation, and construction of earthworks, including hazardous waste site remediation. The core of SITE CONTROLLER is a site modelling system that represents existing and prospective terrain shapes, roads, hydrology, etc. Around this core are analysis, simulation, and vehicle control tools. Integrating these modules into one program enables civil engineers and contractors to use a single interface and database throughout the life of a project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on results from five companies in the aerospace and automotive industries to show that over-commitment of technical professionals and under-representation of key skills on technology development and transition teams seriously impairs team performance. The research finds that 40 percent of the projects studied were inadequately staffed, resulting in weaker team communications and alignment. Most importantly, the weak staffing on these teams is found to be associated with a doubling of project failure rate to reach full production. Those weakly staffed teams that did successfully insert technology into production systems were also much more likely than other teams to have development delays and late engineering changes. The conclusion suggests that the expense of project failure, delay and late engineering changes in these companies must greatly out-weigh the savings gained from reduced staffing costs, and that this problem is likely going to be found in other technology-intensive firms intent on seeing project budgets as a cost to be minimized rather than an investment to be maximized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developments in mammalian cell culture and recombinant technology has allowed for the production of recombinant proteins for use as human therapeutics. Mammalian cell culture is typically operated at the physiological temperature of 37°. However, recent research has shown that the use of low-temperature conditions (30-33°) as a platform for cell-culture results in changes in cell characteristics, such as increased specific productivity and extended periods of cell viability, that can potentially improve the production of recombinant proteins. Furthermore, many recent reports have focused on investigating low-temperature mammalian cell culture of Chinese hamster ovary (CHO) cells, one of the principal cell-lines used in industrial production of recombinant proteins. Exposure to low ambient temperatures exerts an external stress on all living cells, and elicits a cellular response. This cold-stress response has been observed in bacteria, plants and mammals, and is regulated at the gene level. The exact genes and molecular mechanisms involved in the cold-stress response in prokaryotes and plants have been well studied. There are also various reports that detail the modification of cold-stress genes to improve the characteristics of bacteria or plant cells at low temperatures. However, there is very limited information on mammalian cold-stress genes or the related pathways governing the mammalian cold-stress response. This project seeks to investigate and characterise cold-stress genes that are differentially expressed during low-temperature culture of CHO cells, and to relate them to the various changes in cell characteristics observed in low-temperature culture of CHO cells. The gene information can then be used to modify CHO cell-lines for improved performance in the production of recombinant proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

by John M. Barentine.