3 resultados para probabilistic Hough transform
em Massachusetts Institute of Technology
Resumo:
Robots must act purposefully and successfully in an uncertain world. Sensory information is inaccurate or noisy, actions may have a range of effects, and the robot's environment is only partially and imprecisely modeled. This thesis introduces active randomization by a robot, both in selecting actions to execute and in focusing on sensory information to interpret, as a basic tool for overcoming uncertainty. An example of randomization is given by the strategy of shaking a bin containing a part in order to orient the part in a desired stable state with some high probability. Another example consists of first using reliable sensory information to bring two parts close together, then relying on short random motions to actually mate the two parts, once the part motions lie below the available sensing resolution. Further examples include tapping parts that are tightly wedged, twirling gears before trying to mesh them, and vibrating parts to facilitate a mating operation.
Resumo:
Graphical techniques for modeling the dependencies of randomvariables have been explored in a variety of different areas includingstatistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics.Formalisms for manipulating these models have been developedrelatively independently in these research communities. In this paper weexplore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independencenetworks (PINs). The paper contains a self-contained review of the basic principles of PINs.It is shown that the well-known forward-backward (F-B) and Viterbialgorithms for HMMs are special cases of more general inference algorithms forarbitrary PINs. Furthermore, the existence of inference and estimationalgorithms for more general graphical models provides a set of analysistools for HMM practitioners who wish to explore a richer class of HMMstructures.Examples of relatively complex models to handle sensorfusion and coarticulationin speech recognitionare introduced and treated within the graphical model framework toillustrate the advantages of the general approach.
Resumo:
Lean is common sense and good business sense. As organizations grow and become more successful, they begin to lose insight into the basic truths of what made them successful. Organizations have to deal with more and more issues that may not have anything to do with directly providing products or services to their customers. Lean is a holistic management approach that brings the focus of the organization back to providing value to the customer. In August 2002, Mrs. Darleen Druyun, the Principal Deputy to the Assistant Secretary of the Air Force for Acquisition and government co-chairperson of the Lean Aerospace Initiative (LAI), decided it was time for Air Force acquisitions to embrace the concepts of lean. At her request, the LAI Executive Board developed a concept and methodology to employ lean into the Air Force’s acquisition culture and processes. This was the birth of the “Lean Now” initiative. An enterprise-wide approach was used, involving Air Force System Program Offices (SPOs), aerospace industry, and several Department of Defense agencies. The aim of Lean Now was to focus on the process interfaces between these “enterprise” stakeholders to eliminate barriers that impede progress. Any best practices developed would be institutionalized throughout the Air Force and the Department of Defense (DoD). The industry members of LAI agreed to help accelerate the government-industry transformation by donating lean Subject Matter Experts (SMEs) to mentor, train, and facilitate the lean events of each enterprise. Currently, the industry SMEs and the Massachusetts Institute of Technology are working together to help the Air Force develop its own lean infrastructure of training courses and Air Force lean SMEs. The first Lean Now programs were the F/A-22, Global Hawk, and F-16. Each program focused on specific acquisition processes. The F/A-22 focused on the Test and Evaluation process; the Global Hawk focused on Evolutionary Acquisitions; and the F-16 focused on improving the Contract Closeout process. Through lean, each enterprise made many significant improvements. The F/A-22 was able to reduce its Operational Flight Plan (OFP) Preparation and Load process time of 2 to 3 months down to 7 hours. The Global Hawk developed a new production plan that increases the annual production of its Integrated Sensor Suite from 3 per year to 6 per year. The F-16 enterprise generated and is working 12 initiatives that could result in a contract closeout cycle time reduction of 3 to 7 years. Each enterprise continues to generate more lean initiatives that focus on other areas and processes within their respective enterprises.