1 resultado para place names
em Massachusetts Institute of Technology
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (8)
- Adam Mickiewicz University Repository (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (15)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (1)
- Brock University, Canada (29)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (69)
- Center for Jewish History Digital Collections (5)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (14)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (7)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (6)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (86)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (31)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (5)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (151)
- Queensland University of Technology - ePrints Archive (158)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (7)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (38)
- University of Michigan (23)
- University of Queensland eSpace - Australia (1)
- University of Washington (6)
- USA Library of Congress (7)
- WestminsterResearch - UK (5)
Resumo:
While navigating in an environment, a vision system has to be able to recognize where it is and what the main objects in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is to identify familiar locations (e.g., office 610, conference room 941, Main Street), to categorize new environments (office, corridor, street) and to use that information to provide contextual priors for object recognition (e.g., table, chair, car, computer). We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors that simplify object recognition. We have trained the system to recognize over 60 locations (indoors and outdoors) and to suggest the presence and locations of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user.