2 resultados para phenotypic variation
em Massachusetts Institute of Technology
Resumo:
In the field of biologics production, productivity and stability of the transfected gene of interest are two very important attributes that dictate if a production process is viable. To further understand and improve these two traits, we would need to further our understanding of the factors affecting them. These would include integration site of the gene, gene copy number, cell phenotypic variation and cell environment. As these factors play different parts in the development process, they lead to variable productivity and stability of the transfected gene between clones, the well-known phenomenon of “clonal variation”. A study of this phenomenon and how the various factors contribute to it will thus shed light on strategies to improve productivity and stability in the production cell line. Of the four factors, the site of gene integration appears to be one of the most important. Hence, it is proposed that work is done on studying how different integration sites affect the productivity and stability of transfected genes in the development process. For the study to be more industrially relevant, it is proposed that the Chinese Hamster Ovary dhfr-deficient cell line, CHO-DG44, is used as the model system.
Resumo:
We present a unifying framework in which "object-independent" modes of variation are learned from continuous-time data such as video sequences. These modes of variation can be used as "generators" to produce a manifold of images of a new object from a single example of that object. We develop the framework in the context of a well-known example: analyzing the modes of spatial deformations of a scene under camera movement. Our method learns a close approximation to the standard affine deformations that are expected from the geometry of the situation, and does so in a completely unsupervised (i.e. ignorant of the geometry of the situation) fashion. We stress that it is learning a "parameterization", not just the parameter values, of the data. We then demonstrate how we have used the same framework to derive a novel data-driven model of joint color change in images due to common lighting variations. The model is superior to previous models of color change in describing non-linear color changes due to lighting.