9 resultados para permanent magnet synchronous machine
em Massachusetts Institute of Technology
Resumo:
Many approaches to force control have assumed the ability to command torques accurately. Concurrently, much research has been devoted to developing accurate torque actuation schemes. Often, torque sensors have been utilized to close a feedback loop around output torque. In this paper, the torque control of a brushless motor is investigated through: the design, construction, and utilization of a joint torque sensor for feedback control; and the development and implementation of techniques for phase current based feedforeward torque control. It is concluded that simply closing a torque loop is no longer necessarily the best alternative since reasonably accurate current based torque control is achievable.
Resumo:
I have designed and implemented a system for the multilevel verification of synchronous MOS VLSI circuits. The system, called Silica Pithecus, accepts the schematic of an MOS circuit and a specification of the circuit's intended digital behavior. Silica Pithecus determines if the circuit meets its specification. If the circuit fails to meet its specification Silica Pithecus returns to the designer the reason for the failure. Unlike earlier verifiers which modelled primitives (e.g., transistors) as unidirectional digital devices, Silica Pithecus models primitives more realistically. Transistors are modelled as bidirectional devices of varying resistances, and nodes are modelled as capacitors. Silica Pithecus operates hierarchically, interactively, and incrementally. Major contributions of this research include a formal understanding of the relationship between different behavioral descriptions (e.g., signal, boolean, and arithmetic descriptions) of the same device, and a formalization of the relationship between the structure, behavior, and context of device. Given these formal structures my methods find sufficient conditions on the inputs of circuits which guarantee the correct operation of the circuit in the desired descriptive domain. These methods are algorithmic and complete. They also handle complex phenomena such as races and charge sharing. Informal notions such as races and hazards are shown to be derivable from the correctness conditions used by my methods.
Resumo:
Machine translation has been a particularly difficult problem in the area of Natural Language Processing for over two decades. Early approaches to translation failed since interaction effects of complex phenomena in part made translation appear to be unmanageable. Later approaches to the problem have succeeded (although only bilingually), but are based on many language-specific rules of a context-free nature. This report presents an alternative approach to natural language translation that relies on principle-based descriptions of grammar rather than rule-oriented descriptions. The model that has been constructed is based on abstract principles as developed by Chomsky (1981) and several other researchers working within the "Government and Binding" (GB) framework. Thus, the grammar is viewed as a modular system of principles rather than a large set of ad hoc language-specific rules.
Resumo:
The dataflow model of computation exposes and exploits parallelism in programs without requiring programmer annotation; however, instruction- level dataflow is too fine-grained to be efficient on general-purpose processors. A popular solution is to develop a "hybrid'' model of computation where regions of dataflow graphs are combined into sequential blocks of code. I have implemented such a system to allow the J-Machine to run Id programs, leaving exposed a high amount of parallelism --- such as among loop iterations. I describe this system and provide an analysis of its strengths and weaknesses and those of the J-Machine, along with ideas for improvement.
Resumo:
In this thesis, I designed and implemented a virtual machine (VM) for a monomorphic variant of Athena, a type-omega denotational proof language (DPL). This machine attempts to maintain the minimum state required to evaluate Athena phrases. This thesis also includes the design and implementation of a compiler for monomorphic Athena that compiles to the VM. Finally, it includes details on my implementation of a read-eval-print loop that glues together the VM core and the compiler to provide a full, user-accessible interface to monomorphic Athena. The Athena VM provides the same basis for DPLs that the SECD machine does for pure, functional programming and the Warren Abstract Machine does for Prolog.
Resumo:
We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.
Resumo:
Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.
Resumo:
In this paper, we discuss the consensus problem for synchronous distributed systems with orderly crash failures. For a synchronous distributed system of n processes with up to t crash failures and f failures actually occur, first, we present a bivalency argument proof to solve the open problem of proving the lower bound, min (t + 1, f + 2) rounds, for early-stopping synchronous consensus with orderly crash failures, where t < n - 1. Then, we extend the system model with orderly crash failures to a new model in which a process is allowed to send multiple messages to the same destination process in a round and the failing processes still respect the order specified by the protocol in sending messages. For this new model, we present a uniform consensus protocol, in which all non-faulty processes always decide and stop immediately by the end of f + 1 rounds. We prove that the lower bound of early stopping protocols for both consensus and uniform consensus are f + 1 rounds under the new model, and our proposed protocol is optimal.
Resumo:
Increasingly used in online auctions, buyout prices allow bidders to instantly purchase the item listed. We distinguish two types: a temporary buyout option disappears if a bid above the reserve price is made; a permanent one remains throughout the auction or until it is exercised. In a model featuring time-sensitive bidders with uniform valuations and Poisson arrivals but endogenous bidding times, we focus on finding temporary and permanent buyout prices maximizing the seller's discounted revenue, and examine the relative benefit of using each type of option in various environments. We characterize equilibrium bidder strategies in both cases and then solve the problem of maximizing seller's utility by simulation. Our numerical experiments suggest that buyout options may significantly increase a seller’s revenue. Additionally, while a temporary buyout option promotes early bidding, a permanent option gives an incentive to the bidders to bid late, thus leading to concentrated bids near the end of the auction.