6 resultados para pattern transfer
em Massachusetts Institute of Technology
Resumo:
We report on the process parameters of nanoimprint lithography (NIL) for the fabrication of two-dimensional (2-D) photonic crystals. The nickel mould with 2-D photonic crystal patterns covering the area up to 20mm² is produced by electron-beam lithography (EBL) and electroplating. Periodic pillars as high as 200nm to 250nm are produced on the mould with the diameters ranging from 180nm to 400nm. The mould is employed for nanoimprinting on the poly-methyl-methacrylate (PMMA) layer spin-coated on the silicon substrate. Periodic air holes are formed in PMMA above its glass-transition temperature and the patterns on the mould are well transferred. This nanometer-size structure provided by NIL is subjective to further pattern transfer.
Resumo:
Formalizing algorithm derivations is a necessary prerequisite for developing automated algorithm design systems. This report describes a derivation of an algorithm for incrementally matching conjunctive patterns against a growing database. This algorithm, which is modeled on the Rete matcher used in the OPS5 production system, forms a basis for efficiently implementing a rule system. The highlights of this derivation are: (1) a formal specification for the rule system matching problem, (2) derivation of an algorithm for this task using a lattice-theoretic model of conjunctive and disjunctive variable substitutions, and (3) optimization of this algorithm, using finite differencing, for incrementally processing new data.
Resumo:
Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world’s electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, the US consumer will favor energy sources that can satisfy the need for electricity and other energy-intensive products (1) on a sustainable basis with minimal environmental impact, (2) with enhanced reliability and safety and (3) competitive economics. Given that advances are made to fully apply the potential benefits of nuclear energy systems, the next generation of nuclear systems can provide a vital part of a long-term, diversified energy supply. The Department of Energy has begun research on such a new generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals [1]. These future nuclear power systems will require advances in materials, reactor physics as well as heat transfer to realize their full potential. In this paper, a summary of these advanced nuclear power systems is presented along with a short synopsis of the important heat transfer issues. Given the nature of research and the dynamics of these conceptual designs, key aspects of the physics will be provided, with details left for the presentation.
Resumo:
The summary from Goodson’s group on their recent work on heat transfer issues in the microelectronics and data storage industries illustrate the critical role of heat transfer for some areas of information technology. In this article, we build on their work and discuss some directions worthy of further research.
Resumo:
We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface.