2 resultados para pack hike test
em Massachusetts Institute of Technology
Resumo:
This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.
Resumo:
This thesis presents a new approach to building a design for testability (DFT) system. The system takes a digital circuit description, finds out the problems in testing it, and suggests circuit modifications to correct those problems. The key contributions of the thesis research are (1) setting design for testability in the context of test generation (TG), (2) using failures during FG to focus on testability problems, and (3) relating circuit modifications directly to the failures. A natural functionality set is used to represent the maximum functionalities that a component can have. The current implementation has only primitive domain knowledge and needs other work as well. However, armed with the knowledge of TG, it has already demonstrated its ability and produced some interesting results on a simple microprocessor.