2 resultados para orientamento :: 013 :: Chimico

em Massachusetts Institute of Technology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are many practical problems that fall under this domain. We propose a way to map the classification problem onto a standard Bayesian inference problem. We also give a fast, specialized inference algorithm that incrementally updates relevant probabilities. We apply this algorithm to web-classification problems and show that our algorithm empirically works well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.