7 resultados para orbicular texture

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Texture provides one cue for identifying the physical cause of an intensity edge, such as occlusion, shadow, surface orientation or reflectance change. Marr, Julesz, and others have proposed that texture is represented by small lines or blobs, called 'textons' by Julesz [1981a], together with their attributes, such as orientation, elongation, and intensity. Psychophysical studies suggest that texture boundaries are perceived where distributions of attributes over neighborhoods of textons differ significantly. However, these studies, which deal with synthetic images, neglect to consider two important questions: How can these textons be extracted from images of natural scenes? And how, exactly, are texture boundaries then found? This thesis proposes answers to these questions by presenting an algorithm for computing blobs from natural images and a statistic for measuring the difference between two sample distributions of blob attributes. As part of the blob detection algorithm, methods for estimating image noise are presented, which are applicable to edge detection as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the properties of feedforward neural networks trained with Hebbian learning algorithms. A new unsupervised algorithm is proposed which produces statistically uncorrelated outputs. The algorithm causes the weights of the network to converge to the eigenvectors of the input correlation with largest eigenvalues. The algorithm is closely related to the technique of Self-supervised Backpropagation, as well as other algorithms for unsupervised learning. Applications of the algorithm to texture processing, image coding, and stereo depth edge detection are given. We show that the algorithm can lead to the development of filters qualitatively similar to those found in primate visual cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new formulation for recovering the structure and motion parameters of a moving patch using both motion and shading information is presented. It is based on a new differential constraint equation (FICE) that links the spatiotemporal gradients of irradiance to the motion and structure parameters and the temporal variations of the surface shading. The FICE separates the contribution to the irradiance spatiotemporal gradients of the gradients due to texture from those due to shading and allows the FICE to be used for textured and textureless surface. The new approach, combining motion and shading information, leads directly to two different contributions: it can compensate for the effects of shading variations in recovering the shape and motion; and it can exploit the shading/illumination effects to recover motion and shape when they cannot be recovered without it. The FICE formulation is also extended to multiple frames.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is presented for the visual analysis of objects by computer. It is particularly well suited for opaque objects with smoothly curved surfaces. The method extracts information about the object's surface properties, including measures of its specularity, texture, and regularity. It also aids in determining the object's shape. The application of this method to a simple recognition task ??e recognition of fruit ?? discussed. The results on a more complex smoothly curved object, a human face, are also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimuli outside classical receptive fields have been shown to exert significant influence over the activities of neurons in primary visual cortexWe propose that contextual influences are used for pre-attentive visual segmentation, in a new framework called segmentation without classification. This means that segmentation of an image into regions occurs without classification of features within a region or comparison of features between regions. This segmentation framework is simpler than previous computational approaches, making it implementable by V1 mechanisms, though higher leve l visual mechanisms are needed to refine its output. However, it easily handles a class of segmentation problems that are tricky in conventional methods. The cortex computes global region boundaries by detecting the breakdown of homogeneity or translation invariance in the input, using local intra-cortical interactions mediated by the horizontal connections. The difference between contextual influences near and far from region boundaries makes neural activities near region boundaries higher than elsewhere, making boundaries more salient for perceptual pop-out. This proposal is implemented in a biologically based model of V1, and demonstrated using examples of texture segmentation and figure-ground segregation. The model performs segmentation in exactly the same neural circuit that solves the dual problem of the enhancement of contours, as is suggested by experimental observations. Its behavior is compared with psychophysical and physiological data on segmentation, contour enhancement, and contextual influences. We discuss the implications of segmentation without classification and the predictions of our V1 model, and relate it to other phenomena such as asymmetry in visual search.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimuli outside classical receptive fields significantly influence the neurons' activities in primary visual cortex. We propose that such contextual influences are used to segment regions by detecting the breakdown of homogeneity or translation invariance in the input, thus computing global region boundaries using local interactions. This is implemented in a biologically based model of V1, and demonstrated in examples of texture segmentation and figure-ground segregation. By contrast with traditional approaches, segmentation occurs without classification or comparison of features within or between regions and is performed by exactly the same neural circuit responsible for the dual problem of the grouping and enhancement of contours.