1 resultado para optimal power flow problem
em Massachusetts Institute of Technology
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (15)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (15)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (22)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- DRUM (Digital Repository at the University of Maryland) (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (137)
- Instituto Politécnico de Viseu (4)
- Instituto Politécnico do Porto, Portugal (27)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Nottingham eTheses (1)
- QSpace: Queen's University - Canada (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (202)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (209)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (1)
- Universidade de Madeira (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Metodista de São Paulo (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Michigan (4)
- University of Queensland eSpace - Australia (9)
- University of Washington (2)
Resumo:
We describe an adaptive, mid-level approach to the wireless device power management problem. Our approach is based on reinforcement learning, a machine learning framework for autonomous agents. We describe how our framework can be applied to the power management problem in both infrastructure and ad~hoc wireless networks. From this thesis we conclude that mid-level power management policies can outperform low-level policies and are more convenient to implement than high-level policies. We also conclude that power management policies need to adapt to the user and network, and that a mid-level power management framework based on reinforcement learning fulfills these requirements.