4 resultados para optical interconnects
em Massachusetts Institute of Technology
Resumo:
Nanoporous GaN films are prepared by UV assisted electrochemical etching using HF solution as an electrolyte. To assess the optical quality and morphology of these nanoporous films, micro-photoluminescence (PL), micro-Raman scattering, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques have been employed. SEM and AFM measurements revealed an average pore size of about 85-90 nm with a transverse dimension of 70-75 nm. As compared to the as-grown GaN film, the porous layer exhibits a substantial photoluminescence intensity enhancement with a partial relaxation of compressive stress. Such a stress relaxation is further confirmed by the red shifted E₂(TO) phonon peak in the Raman spectrum of porous GaN.
Resumo:
Three dimensional (3-D) integrated circuits can be fabricated by bonding previously processed device layers using metal-metal bonds that also serve as layer-to-layer interconnects. Bonded copper interconnects test structures were created by thermocompression bonding and the bond toughness was measured using the four-point test. The effects of bonding temperature, physical bonding and failure mechanisms were investigated. The surface effects on copper surface due to pre-bond clean (with glacial acetic acid) were also looked into. A maximum average bond toughness of approximately 35 J/m² was obtained bonding temperature 300 C.
Resumo:
In recent years, application of fluorescent conjugated polymers to sense chemical and biological analytes has received much attention owing to its technological significance. Water soluble conjugated polymers are interesting towards the developing sensors for biomolecules. In this present contribution, we describe the syntheses and characterization of a series of water soluble conjugated polymers with sulfonic acid groups in the side chain. Such anionic conjugated polymers are designed to interact with biomolecules such as cytochrome-C. All polymers are water soluble and showed strong blue emission. Significant quenching of the fluorescence from our functionalized PPP was observed upon addition of viologen derivatives or cytochrome -C.
Resumo:
Three terminal âdotted-I’ interconnect structures, with vias at both ends and an additional via in the middle, were tested under various test conditions. Mortalities (failures) were found in right segments with jL value as low as 1250 A/cm, and the mortality of a dotted-I segment is dependent on the direction and magnitude of the current in the adjacent segment. Some mortalities were also found in the right segments under a test condition where no failure was expected. Cu extrusion along the delaminated Cu/Si₃N₄ interface near the central via region was believed to cause the unexpected failures. From the time-to-failure (TTF), it is possible to quantify the Cu/Si₃N₄ interfacial strength and bonding energy. Hence, the demonstrated test methodology can be used to investigate the integrity of the Cu dual damascene processes. As conventionally determined critical jL values in two-terminal via-terminated lines cannot be directly applied to interconnects with branched segments, this also serves as a good methodology to identify the critical effective jL values for immortality.