2 resultados para online searching
em Massachusetts Institute of Technology
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
Increasingly used in online auctions, buyout prices allow bidders to instantly purchase the item listed. We distinguish two types: a temporary buyout option disappears if a bid above the reserve price is made; a permanent one remains throughout the auction or until it is exercised. In a model featuring time-sensitive bidders with uniform valuations and Poisson arrivals but endogenous bidding times, we focus on finding temporary and permanent buyout prices maximizing the seller's discounted revenue, and examine the relative benefit of using each type of option in various environments. We characterize equilibrium bidder strategies in both cases and then solve the problem of maximizing seller's utility by simulation. Our numerical experiments suggest that buyout options may significantly increase a seller’s revenue. Additionally, while a temporary buyout option promotes early bidding, a permanent option gives an incentive to the bidders to bid late, thus leading to concentrated bids near the end of the auction.