1 resultado para omitted neighborhood attributes
em Massachusetts Institute of Technology
Filtro por publicador
- Aberdeen University (2)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Aquatic Commons (4)
- Archive of European Integration (3)
- Aston University Research Archive (8)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (18)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (9)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- Harvard University (4)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (13)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (30)
- Queensland University of Technology - ePrints Archive (367)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (5)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (45)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (3)
- University of Michigan (70)
- University of Queensland eSpace - Australia (27)
- University of Southampton, United Kingdom (2)
- University of Washington (7)
- WestminsterResearch - UK (5)
Resumo:
This thesis describes a system that synthesizes regularity exposing attributes from large protein databases. After processing primary and secondary structure data, this system discovers an amino acid representation that captures what are thought to be the three most important amino acid characteristics (size, charge, and hydrophobicity) for tertiary structure prediction. A neural network trained using this 16 bit representation achieves a performance accuracy on the secondary structure prediction problem that is comparable to the one achieved by a neural network trained using the standard 24 bit amino acid representation. In addition, the thesis describes bounds on secondary structure prediction accuracy, derived using an optimal learning algorithm and the probably approximately correct (PAC) model.