8 resultados para numerical reconstruction
em Massachusetts Institute of Technology
Resumo:
This work demonstrates how partial evaluation can be put to practical use in the domain of high-performance numerical computation. I have developed a technique for performing partial evaluation by using placeholders to propagate intermediate results. For an important class of numerical programs, a compiler based on this technique improves performance by an order of magnitude over conventional compilation techniques. I show that by eliminating inherently sequential data-structure references, partial evaluation exposes the low-level parallelism inherent in a computation. I have implemented several parallel scheduling and analysis programs that study the tradeoffs involved in the design of an architecture that can effectively utilize this parallelism. I present these results using the 9- body gravitational attraction problem as an example.
Resumo:
KAM is a computer program that can automatically plan, monitor, and interpret numerical experiments with Hamiltonian systems with two degrees of freedom. The program has recently helped solve an open problem in hydrodynamics. Unlike other approaches to qualitative reasoning about physical system dynamics, KAM embodies a significant amount of knowledge about nonlinear dynamics. KAM's ability to control numerical experiments arises from the fact that it not only produces pictures for us to see, but also looks at (sic---in its mind's eye) the pictures it draws to guide its own actions. KAM is organized in three semantic levels: orbit recognition, phase space searching, and parameter space searching. Within each level spatial properties and relationships that are not explicitly represented in the initial representation are extracted by applying three operations ---(1) aggregation, (2) partition, and (3) classification--- iteratively.
Resumo:
We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
Resumo:
This paper investigates the linear degeneracies of projective structure estimation from point and line features across three views. We show that the rank of the linear system of equations for recovering the trilinear tensor of three views reduces to 23 (instead of 26) in the case when the scene is a Linear Line Complex (set of lines in space intersecting at a common line) and is 21 when the scene is planar. The LLC situation is only linearly degenerate, and we show that one can obtain a unique solution when the admissibility constraints of the tensor are accounted for. The line configuration described by an LLC, rather than being some obscure case, is in fact quite typical. It includes, as a particular example, the case of a camera moving down a hallway in an office environment or down an urban street. Furthermore, an LLC situation may occur as an artifact such as in direct estimation from spatio-temporal derivatives of image brightness. Therefore, an investigation into degeneracies and their remedy is important also in practice.
Resumo:
This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.
Resumo:
The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.
Resumo:
Electroosmotic flow is a convenient mechanism for transporting polar fluid in a microfluidic device. The flow is generated through the application of an external electric field that acts on the free charges that exists in a thin Debye layer at the channel walls. The charge on the wall is due to the chemistry of the solid-fluid interface, and it can vary along the channel, e.g. due to modification of the wall. This investigation focuses on the simulation of the electroosmotic flow (EOF) profile in a cylindrical microchannel with step change in zeta potential. The modified Navier-Stoke equation governing the velocity field and a non-linear two-dimensional Poisson-Boltzmann equation governing the electrical double-layer (EDL) field distribution are solved numerically using finite control-volume method. Continuities of flow rate and electric current are enforced resulting in a non-uniform electrical field and pressure gradient distribution along the channel. The resulting parabolic velocity distribution at the junction of the step change in zeta potential, which is more typical of a pressure-driven velocity flow profile, is obtained.
Resumo:
This work presents detailed numerical calculations of the dielectrophoretic force in octupolar traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using an indirect implementation of the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that the full MST calculation is only required in the study of non-spherical particles.