8 resultados para nanoporous templates

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous GaN films are prepared by UV assisted electrochemical etching using HF solution as an electrolyte. To assess the optical quality and morphology of these nanoporous films, micro-photoluminescence (PL), micro-Raman scattering, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques have been employed. SEM and AFM measurements revealed an average pore size of about 85-90 nm with a transverse dimension of 70-75 nm. As compared to the as-grown GaN film, the porous layer exhibits a substantial photoluminescence intensity enhancement with a partial relaxation of compressive stress. Such a stress relaxation is further confirmed by the red shifted E₂(TO) phonon peak in the Raman spectrum of porous GaN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates with anodized alumina mask prepared in different methods including 2 step anodization of porous alumina template and interference lithography assisted array of pores. The templates helped to define Ni nanodots inside the pores which in turn catalyzed the growth of carbon nanotubes inside the PECVD system at temperature of 700-750C using mixture of ammonia and acetylene gases. The resulting well-aligned multi-walled carbon nanotubes were further investigated using SEM, TEM and Raman spectroscopy. The size, shape and structure of the grown carbon nanotubes were also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High density, uniform GaN nanodot arrays with controllable size have been synthesized by using template-assisted selective growth. The GaN nanodots with average diameter 40nm, 80nm and 120nm were selectively grown by metalorganic chemical vapor deposition (MOCVD) on a nano-patterned SiO2/GaN template. The nanoporous SiO2 on GaN surface was created by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) template as a mask. This selective regrowth results in highly crystalline GaN nanodots confirmed by high resolution transmission electron microscopy. The narrow size distribution and uniform spatial position of the nanoscale dots offer potential advantages over self-assembled dots grown by the Stranski–Krastanow mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance and manufacturability are two important issues that must be taken into account during MEMS design. Existing MEMS design models or systems follow a process-driven design paradigm, that is, design starts from the specification of process sequence or the customization of foundry-ready process template. There has been essentially no methodology or model that supports generic, high-level design synthesis for MEMS conceptual design. As a result, there lacks a basis for specifying the initial process sequences. To address this problem, this paper proposes a performance-driven, microfabrication-oriented methodology for MEMS conceptual design. A unified behaviour representation method is proposed which incorporates information of both physical interactions and chemical/biological/other reactions. Based on this method, a behavioural process based design synthesis model is proposed, which exploits multidisciplinary phenomena for design solutions, including both the structural components and their configuration for the MEMS device, as well as the necessary substances for the chemical/biological/other reactions. The model supports both forward and backward synthetic search for suitable phenomena. To ensure manufacturability, a strategy of using microfabrication-oriented phenomena as design knowledge is proposed, where the phenomena are developed from existing MEMS devices that have associated MEMS-specific microfabrication processes or foundry-ready process templates. To test the applicability of the proposed methodology, the paper also studies microfluidic device design and uses a micro-pump design for the case study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphiphilic polymers are a class of polymers that self-assemble into different types of microstructure, depending on the solvent environment and external stimuli. Self assembly structures can exist in many different forms, such as spherical micelles, rod-like micelles, bi-layers, vesicles, bi-continuous structure etc. Most biological systems are basically comprised of many of these organised structures arranged in an intelligent manner, which impart functions and life to the system. We have adopted the atom transfer radical polymerization (ATRP) technique to synthesize various types of block copolymer systems that self-assemble into different microstructure when subject to an external stimuli, such as pH or temperature. The systems that we have studied are: (1) pH responsive fullerene (C60) containing poly(methacrylic acid) (PMAA-b-C60); (2) pH and temperature responsive fullerene containing poly[2-(dimethylamino)ethyl methacrylate] (C₆₀-b-PDMAEMA); (3) other responsive water-soluble fullerene systems. By varying temperature, pH and salt concentration, different types microstructure can be produced. In the presence of inorganic salts, fractal patterns at nano- to microscopic dimension were observed for negatively charged PMAA-b-C60, while such structure was not observed for positively charged PDMAEMA-b-C60. We demonstrated that negatively charged fullerene containing polymeric systems can serve as excellent nano-templates for the controlled growth of inorganic crystals at the nano- to micrometer length scale and the possible mechanism was proposed. The physical properties and the characteristics of their self-assembly properties will be discussed, and their implications to chemical and biomedical applications will be highlighted.